Suppr超能文献

利用深度学习开发脑卒中患者上肢运动功能累积评估系统

Developing an Accumulative Assessment System of Upper Extremity Motor Function in Patients With Stroke Using Deep Learning.

作者信息

Lin Gong-Hong, Lee Shih-Chieh, Huang Chien-Yu, Wang Inga, Lee Ya-Chen, Hsueh I-Ping, Hsieh Ching-Lin

机构信息

International Ph.D. Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.

School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.

出版信息

Phys Ther. 2024 Jun 4;104(6). doi: 10.1093/ptj/pzae050.

Abstract

OBJECTIVE

The Fugl-Meyer assessment for upper extremity (FMA-UE) is a measure for assessing upper extremity motor function in patients with stroke. However, the considerable administration time of the assessment decreases its feasibility. This study aimed to develop an accumulative assessment system of upper extremity motor function (AAS-UE) based on the FMA-UE to improve administrative efficiency while retaining sufficient psychometric properties.

METHODS

The study used secondary data from 3 previous studies having FMA-UE datasets, including 2 follow-up studies for subacute stroke individuals and 1 test-retest study for individuals with chronic stroke. The AAS-UE adopted deep learning algorithms to use patients' prior information (ie, the FMA-UE scores in previous assessments, time interval of adjacent assessments, and chronicity of stroke) to select a short and personalized item set for the following assessment items and reproduce their FMA-UE scores.

RESULTS

Our data included a total of 682 patients after stroke. The AAS-UE administered 10 different items for each patient. The AAS-UE demonstrated good concurrent validity (r = 0.97-0.99 with the FMA-UE), high test-retest reliability (intra-class correlation coefficient = 0.96), low random measurement error (percentage of minimal detectable change = 15.6%), good group-level responsiveness (standardized response mean = 0.65-1.07), and good individual-level responsiveness (30.5%-53.2% of patients showed significant improvement). These psychometric properties were comparable to those of the FMA-UE.

CONCLUSION

The AAS-UE uses an innovative assessment method, which makes good use of patients' prior information to achieve administrative efficiency with good psychometric properties.

IMPACT

This study demonstrates a new assessment method to improve administrative efficiency while retaining psychometric properties, especially individual-level responsiveness and random measurement error, by making good use of patients' basic information and medical records.

摘要

目的

上肢Fugl-Meyer评估量表(FMA-UE)是评估中风患者上肢运动功能的一种方法。然而,该评估所需的大量时间降低了其可行性。本研究旨在基于FMA-UE开发一种上肢运动功能累积评估系统(AAS-UE),以提高管理效率,同时保留足够的心理测量学特性。

方法

本研究使用了之前3项研究的二次数据,这些研究拥有FMA-UE数据集,包括2项针对亚急性中风个体的随访研究和1项针对慢性中风个体的重测研究。AAS-UE采用深度学习算法,利用患者的先前信息(即先前评估中的FMA-UE评分、相邻评估的时间间隔和中风的慢性程度)为后续评估项目选择简短且个性化的项目集,并重现其FMA-UE评分。

结果

我们的数据共纳入了682例中风后患者。AAS-UE为每位患者实施10项不同的项目。AAS-UE表现出良好的同时效度(与FMA-UE的相关系数r = 0.97 - 0.99)、高重测信度(组内相关系数 = 0.96)、低随机测量误差(最小可检测变化百分比 = 15.6%)、良好的组水平反应度(标准化反应均值 = 0.65 - 1.07)和良好的个体水平反应度(30.5% - 53.2%的患者显示出显著改善)。这些心理测量学特性与FMA-UE相当。

结论

AAS-UE采用了一种创新的评估方法,充分利用患者的先前信息,在具备良好心理测量学特性的同时实现了管理效率。

影响

本研究展示了一种新的评估方法,通过充分利用患者的基本信息和病历,在保留心理测量学特性,尤其是个体水平反应度和随机测量误差的同时提高管理效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验