Department of Health Policy and Management, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
College of Computer Science, Sichuan University, Chengdu, Sichuan, China.
Front Public Health. 2024 Mar 12;12:1305746. doi: 10.3389/fpubh.2024.1305746. eCollection 2024.
Non-suicidal self-injury (NSSI) has become a significant public health issue, especially prevalent among adolescents. The complexity and multifactorial nature of NSSI necessitate a comprehensive understanding of its underlying causal factors. This research leverages the causal discovery methodology to explore these causal associations in children.
An observational dataset was scrutinized using the causal discovery method, particularly employing the constraint-based approach. By integrating machine learning and causal inference techniques, the study aimed to determine direct causal relationships associated with NSSI. The robustness of the causal relationships was evaluated using three methods to construct and validate it: the PC (Peter and Clark) method, Fast Causal Inference (FCI) method, and the GAE (Graphical Autoencoder) method.
Analysis identified nine nodes with direct causal relationships to NSSI, including life satisfaction, depression, family dysfunction, sugary beverage consumption, PYD (positive youth development), internet addiction, COVID-19 related PTSD, academic anxiety, and sleep duration. Four principal causal pathways were identified, highlighting the roles of lockdown-induced lifestyle changes, screen time, positive adolescent development, and family dynamics in influencing NSSI risk.
An in-depth analysis of the factors leading to Non-Suicidal Self-Injury (NSSI), highlighting the intricate connections among individual, family, and pandemic-related influences. The results, derived from computational causal analysis, underscore the critical need for targeted interventions that tackle these diverse causative factors.
非自杀性自伤(NSSI)已成为一个重大的公共卫生问题,尤其在青少年中更为普遍。NSSI 的复杂性和多因素性质需要全面了解其潜在的因果因素。本研究利用因果发现方法来探索儿童中这些因果关系。
使用因果发现方法,特别是基于约束的方法,仔细研究了一个观察性数据集。通过整合机器学习和因果推理技术,该研究旨在确定与 NSSI 相关的直接因果关系。使用三种方法来构建和验证因果关系的稳健性:Peter 和 Clark (PC) 方法、Fast Causal Inference (FCI) 方法和 Graphical Autoencoder (GAE) 方法。
分析确定了与 NSSI 有直接因果关系的九个节点,包括生活满意度、抑郁、家庭功能障碍、含糖饮料消费、PYD(积极青少年发展)、网瘾、COVID-19 相关创伤后应激障碍、学业焦虑和睡眠时间。确定了四个主要的因果途径,突出了封锁引起的生活方式改变、屏幕时间、积极的青少年发展和家庭动态在影响 NSSI 风险方面的作用。
对导致非自杀性自我伤害(NSSI)的因素进行了深入分析,强调了个人、家庭和大流行病相关影响之间的复杂联系。这些来自计算性因果分析的结果强调了需要针对这些不同的致病因素进行有针对性的干预。