Yamaguchi Shingi, Ebe Hiroji, Minegishi Tsutomu, Sugiyama Masakazu
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan.
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17371-17376. doi: 10.1021/acsami.3c14568. Epub 2024 Mar 27.
Conversion of atmospheric carbon dioxide (CO) into valuable feedstocks is a crucial technology, and electrochemical reduction of CO is a promising approach that can provide a useful source of ethylene (CH). Gas diffusion electrodes (GDEs) placed at the interface of the CO gas and electrolyte can achieve high current density through a sufficient supply of dissolved CO to the reaction site, making them indispensable in industrial applications. However, conventional GDEs with carbon substrate have suffered from electrolyte flooding and consequent loss of efficiency, posing an obstacle for practical application. While flood-resistant GDEs with hydrophobic polymer substrate have been proposed recently, only conductive materials can be employed as electrocatalysts because of their insulative properties, despite the high activities of oxide materials such as copper oxide. Here, we introduce an aluminum conductive layer in GDE with polymer substrate to enable the use of electrically resistive catalysts. Cuprous oxide (CuO) with silver particles was tested as a model material and has shown prolonged stability (>17 h) with high CH Faraday efficiency (>50%) while suppressing flooding. A thorough characterization revealed that the conductive layer makes CuO an efficient electrocatalyst, even on the polymer substrate, by providing sufficient electrons through its conduction path. This research significantly expands the scope of electrode design by enabling the incorporation of a wide range of nonelectrically conductive materials on GDEs with polymer substrate.
将大气中的二氧化碳(CO₂)转化为有价值的原料是一项关键技术,而CO₂的电化学还原是一种很有前景的方法,它可以提供有用的乙烯(C₂H₄)来源。置于CO₂气体与电解质界面处的气体扩散电极(GDEs),通过向反应位点充分供应溶解的CO₂,可实现高电流密度,这使得它们在工业应用中不可或缺。然而,传统的以碳为基底的GDEs存在电解质淹没以及随之而来的效率损失问题,这对实际应用构成了障碍。虽然最近有人提出了具有疏水聚合物基底的抗淹没GDEs,但由于其绝缘特性,尽管氧化亚铜等氧化物材料具有高活性,却只能使用导电材料作为电催化剂。在此,我们在具有聚合物基底的GDEs中引入铝导电层,以能够使用电阻性催化剂。以带有银颗粒的氧化亚铜(Cu₂O)作为模型材料进行测试,结果表明,在抑制淹没的同时,它具有延长的稳定性(>17小时)和高的C₂H₄法拉第效率(>50%)。全面的表征表明,导电层通过其传导路径提供足够的电子,即使在聚合物基底上也能使Cu₂O成为一种高效的电催化剂。这项研究通过能够在具有聚合物基底的GDEs上引入广泛的非导电材料,显著扩展了电极设计的范围。