Suppr超能文献

在大型超声多任务图像数据集中对监督学习和自监督学习方法进行基准测试。

Benchmarking Supervised and Self-Supervised Learning Methods in A Large Ultrasound Muti-task Images Dataset.

作者信息

Liu Peizhong, Zhang Jiansong, Wu Xiuming, Liu Shunlan, Wang Yanli, Feng Longxiang, Diao Yong, Liu Zhonghua, Lyu Guorong, Chen Yongjian

出版信息

IEEE J Biomed Health Inform. 2024 Mar 27;PP. doi: 10.1109/JBHI.2024.3382604.

Abstract

Deep learning in ultrasound(US) imaging aims to construct foundational models that accurately reflect the modality's unique characteristics. Nevertheless, the limited datasets and narrow task types have restricted this field in recent years. To address these challenges, we introduce US-MTD120K, a multi-task ultrasound dataset with 120,354 real-world two-dimensional images. This dataset covers three standard plane recognition and two diagnostic tasks in ultrasound imaging, providing a rich basis for model training and evaluation. We detail the data collection, distribution, and labelling processes, ensuring a thorough understanding of the dataset's structure. Furthermore, we conduct extensive benchmark tests on 27 state-of-the-art methods from both supervised and self-supervised learning(SSL) perspectives. In the realm of supervised learning, we analyze the sensitivity of two main feature computation methods to ultrasound images at the representational level, highlighting that models which judiciously constrain global feature computation could potentially serve as a viable analytical approach for US image analysis. In the context of self-supervised learning, we delved into the modelling process of self-supervised learning models for medical images and proposed an improvement strategy, named MoCo-US, a solution that addresses the excessive reliance on pretext task design from the input side. It achieves competitive performance with minimal pretext task design and enhances other SSL methods simply. The dataset and the code will be available at https://github.com/JsongZhang/CDOA-for-UMTD.

摘要

超声(US)成像中的深度学习旨在构建能够准确反映该模态独特特征的基础模型。然而,近年来有限的数据集和狭窄的任务类型限制了这一领域的发展。为应对这些挑战,我们引入了US-MTD120K,这是一个包含120354张真实世界二维图像的多任务超声数据集。该数据集涵盖了超声成像中的三个标准平面识别和两个诊断任务,为模型训练和评估提供了丰富的基础。我们详细介绍了数据收集、分布和标注过程,以确保对数据集结构有全面的了解。此外,我们从监督学习和自监督学习(SSL)的角度对27种先进方法进行了广泛的基准测试。在监督学习领域,我们在表征层面分析了两种主要特征计算方法对超声图像的敏感性,强调明智地约束全局特征计算的模型可能是超声图像分析的一种可行分析方法。在自监督学习的背景下,我们深入研究了医学图像自监督学习模型的建模过程,并提出了一种改进策略,名为MoCo-US,该解决方案从输入端解决了对 pretext 任务设计过度依赖的问题。它以最小的 pretext 任务设计实现了有竞争力的性能,并简单地增强了其他SSL方法。数据集和代码将在https://github.com/JsongZhang/CDOA-for-UMTD上提供。

相似文献

1
Benchmarking Supervised and Self-Supervised Learning Methods in A Large Ultrasound Muti-task Images Dataset.
IEEE J Biomed Health Inform. 2024 Mar 27;PP. doi: 10.1109/JBHI.2024.3382604.
2
An image registration-based self-supervised Su-Net for carotid plaque ultrasound image segmentation.
Comput Methods Programs Biomed. 2024 Feb;244:107957. doi: 10.1016/j.cmpb.2023.107957. Epub 2023 Dec 1.
3
Self-supervised driven consistency training for annotation efficient histopathology image analysis.
Med Image Anal. 2022 Jan;75:102256. doi: 10.1016/j.media.2021.102256. Epub 2021 Oct 13.
5
Self-supervised learning for remote sensing scene classification under the few shot scenario.
Sci Rep. 2023 Jan 9;13(1):433. doi: 10.1038/s41598-022-27313-5.
6
Benchmarking Self-Supervised Representation Learning from a million Cardiac Ultrasound images.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:529-532. doi: 10.1109/EMBC48229.2022.9871511.
7
PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation.
Comput Biol Med. 2024 Mar;170:108006. doi: 10.1016/j.compbiomed.2024.108006. Epub 2024 Jan 15.
8
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.
9
Dissecting self-supervised learning methods for surgical computer vision.
Med Image Anal. 2023 Aug;88:102844. doi: 10.1016/j.media.2023.102844. Epub 2023 May 24.
10
Tailoring pretext tasks to improve self-supervised learning in histopathologic subtype classification of lung adenocarcinomas.
Comput Biol Med. 2023 Nov;166:107484. doi: 10.1016/j.compbiomed.2023.107484. Epub 2023 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验