Suppr超能文献

基于二氧化钒(VO)相变的可调谐C对称破缺超表面

Tunable C-Symmetry-Broken Metasurfaces Based on Phase Transition of Vanadium Dioxide (VO).

作者信息

Zhang Yuting, Hao Xiaoyuan, Lu Xueguang, Liu Meng, Huang Wanxia, Zhang Cheng, Huang Wei, Xu Yi, Zhang Wentao

机构信息

Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.

College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.

出版信息

Materials (Basel). 2024 Mar 11;17(6):1293. doi: 10.3390/ma17061293.

Abstract

Coupling is a ubiquitous phenomenon observed in various systems, which profoundly alters the original oscillation state of resonant systems and leads to the unique optical properties of metasurfaces. In this study, we introduce a terahertz (THz) tunable coupling metasurface characterized by a four-fold rotation (C) symmetry-breaking structural array achieved through the incorporation of vanadium dioxide (VO). This disruption of the C symmetry results in dynamically controlled electromagnetic interactions and couplings between excitation modes. The coupling between new resonant modes modifies the peak of electromagnetic-induced transparency (EIT) within the C symmetric metasurfaces, simulating the mutual interference process between modes. Additionally, breaking the C symmetry enhances the mirror asymmetry, and imparts distinct chiral properties in the far-field during the experimental process. This research demonstrates promising applications in diverse fields, including biological monitoring, light modulation, sensing, and nonlinear enhancement.

摘要

耦合是在各种系统中普遍存在的现象,它深刻地改变了谐振系统的原始振荡状态,并导致了超表面独特的光学特性。在本研究中,我们引入了一种太赫兹(THz)可调谐耦合超表面,其特征在于通过掺入二氧化钒(VO)实现的四重旋转(C)对称破缺结构阵列。C对称性的这种破坏导致了激发模式之间动态可控的电磁相互作用和耦合。新谐振模式之间的耦合改变了C对称超表面内电磁诱导透明(EIT)的峰值,模拟了模式之间的相互干扰过程。此外,打破C对称性增强了镜面不对称性,并在实验过程中在远场赋予了独特的手性特性。这项研究展示了在生物监测、光调制、传感和非线性增强等不同领域的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3ab/10972120/a1872d0358e4/materials-17-01293-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验