载伊维菌素的介孔二氧化硅和聚合物纳米胶囊:对药物负载、体外溶解度提高及释放性能的影响
Ivermectin-Loaded Mesoporous Silica and Polymeric Nanocapsules: Impact on Drug Loading, In Vitro Solubility Enhancement, and Release Performance.
作者信息
Velho Maiara Callegaro, Funk Nadine Lysyk, Deon Monique, Benvenutti Edilson Valmir, Buchner Silvio, Hinrichs Ruth, Pilger Diogo André, Beck Ruy Carlos Ruver
机构信息
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil.
Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia-UFRGS, Av. Ipiranga, 2752, 4° Andar, Porto Alegre 90610-000, RS, Brazil.
出版信息
Pharmaceutics. 2024 Feb 26;16(3):325. doi: 10.3390/pharmaceutics16030325.
Ivermectin (IVM), a widely used drug for parasitic infections, faces formulation and application challenges due to its poor water solubility and limited bioavailability. Pondering the impact of IVM's high partition coefficient value (log P) on its drug release performance, it is relevant to explore whether IVM nanoencapsulation in organic or inorganic nanoparticles would afford comparable enhanced aqueous solubility. To date, the use of inorganic nanoparticles remains an unexplored approach for delivering IVM. Therefore, here we loaded IVM in mesoporous silica particles (IVM-MCM), as inorganic nanomaterial, and in well-known poly(ε-caprolactone) nanocapsules (IVM-NC). IVM-MCM had a well-organized hexagonal mesoporous structure, reduced surface area, and high drug loading of 10% /. IVM-NC had a nanometric mean size (196 nm), high encapsulation efficiency (100%), physicochemical stability as an aqueous dispersion, and drug loading of 0.1% /. Despite differing characteristics, both nanoencapsulated forms enhance IVM's aqueous intrinsic solubility compared to a crystalline IVM: after 72 h, IVM-MCM and IVM-NC achieve 72% and 78% releases through a dialysis bag, whereas crystalline IVM dispersion achieves only 40% drug diffusion. These results show distinct controlled release profiles, where IVM-NC provides a deeper sustained controlled release over the whole experiment compared to the inorganic nanomaterial (IVM-MCM). Discussing differences, including drug loading and release kinetics, is crucial for optimizing IVM's therapeutic performance. The study design, combined with administration route plans and safety considerations for humans and animals, may expedite the rational optimization of IVM nanoformulations for swift clinical translation.
伊维菌素(IVM)是一种广泛用于治疗寄生虫感染的药物,由于其水溶性差和生物利用度有限,面临着制剂和应用方面的挑战。考虑到IVM的高分配系数值(log P)对其药物释放性能的影响,探索将IVM纳米包封在有机或无机纳米颗粒中是否能提供相当的增强水溶性是有意义的。迄今为止,使用无机纳米颗粒递送IVM仍是一种未被探索的方法。因此,我们将IVM负载到介孔二氧化硅颗粒(IVM-MCM)(作为无机纳米材料)和著名的聚(ε-己内酯)纳米胶囊(IVM-NC)中。IVM-MCM具有有序的六边形介孔结构、减小的表面积和10%的高载药量。IVM-NC具有纳米级平均尺寸(196 nm)、高包封效率(100%)、作为水分散体的物理化学稳定性以及0.1%的载药量。尽管特性不同,但与结晶IVM相比,两种纳米包封形式均提高了IVM的水内在溶解度:72小时后,IVM-MCM和IVM-NC通过透析袋实现了72%和78%的释放,而结晶IVM分散体仅实现了40%的药物扩散。这些结果显示出不同的控释曲线,与无机纳米材料(IVM-MCM)相比,IVM-NC在整个实验过程中提供了更深层次的持续控释。讨论包括载药量和释放动力学在内的差异对于优化IVM的治疗性能至关重要。该研究设计,结合给药途径计划以及对人和动物的安全性考虑,可能会加快IVM纳米制剂的合理优化,以便迅速进行临床转化。