Suppr超能文献

靶向蛋白酶用于抗病毒药物研发的最新进展

Recent Advances on Targeting Proteases for Antiviral Development.

作者信息

Borges Pedro Henrique Oliveira, Ferreira Sabrina Baptista, Silva Floriano Paes

机构信息

Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.

Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil.

出版信息

Viruses. 2024 Feb 27;16(3):366. doi: 10.3390/v16030366.

Abstract

Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.

摘要

病毒蛋白酶是药物开发的重要靶点,因为它们可以调节病毒复制、成熟、组装和细胞进入等关键途径。随着几种导致人类疾病的新病毒(如西尼罗河病毒(WNV)和最近的严重急性呼吸综合征冠状病毒2(SARS-CoV-2))的(重新)出现,了解阻断病毒蛋白酶功能背后的机制对于开发新的抗病毒药物和治疗策略至关重要。除了通常通过靶向其活性位点直接抑制目标蛋白酶外,还探索了几种新的途径来损害其活性,例如诱导蛋白质聚集、靶向变构位点或通过细胞蛋白酶体诱导蛋白质降解,在考虑新出现的耐药菌株时,这些途径可能极具价值。在这篇综述中,我们旨在讨论广泛的病毒蛋白酶抑制剂、治疗方法以及蛋白质失活或降解的分子方法的最新进展,深入了解针对这一重要抗病毒靶点的不同可能策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4939/10976044/c3866dbd5551/viruses-16-00366-g001.jpg

相似文献

1
Recent Advances on Targeting Proteases for Antiviral Development.
Viruses. 2024 Feb 27;16(3):366. doi: 10.3390/v16030366.
3
A low-background, fluorescent assay to evaluate inhibitors of diverse viral proteases.
J Virol. 2023 Aug 31;97(8):e0059723. doi: 10.1128/jvi.00597-23. Epub 2023 Aug 14.
4
Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management.
Int J Mol Sci. 2024 Jul 25;25(15):8105. doi: 10.3390/ijms25158105.
5
Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses.
Drug Resist Updat. 2020 Dec;53:100721. doi: 10.1016/j.drup.2020.100721. Epub 2020 Aug 26.
6
Potential inhibitors of SARS-CoV-2: recent advances.
J Drug Target. 2021 Apr;29(4):349-364. doi: 10.1080/1061186X.2020.1853736. Epub 2020 Dec 3.
7
Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19.
J Med Virol. 2021 May;93(5):2722-2734. doi: 10.1002/jmv.26814. Epub 2021 Feb 9.
8
Identification of Cysteine 270 as a Novel Site for Allosteric Modulators of SARS-CoV-2 Papain-Like Protease.
Angew Chem Int Ed Engl. 2022 Dec 23;61(52):e202212378. doi: 10.1002/anie.202212378. Epub 2022 Nov 28.
9
Structure-Based Design of a Dual-Targeted Covalent Inhibitor Against Papain-like and Main Proteases of SARS-CoV-2.
J Med Chem. 2022 Dec 22;65(24):16252-16267. doi: 10.1021/acs.jmedchem.2c00954. Epub 2022 Dec 12.
10
Omicsynin B4 potently blocks coronavirus infection by inhibiting host proteases cathepsin L and TMPRSS2.
Antiviral Res. 2023 Jun;214:105606. doi: 10.1016/j.antiviral.2023.105606. Epub 2023 Apr 17.

引用本文的文献

本文引用的文献

1
Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease.
J Med Chem. 2024 Apr 25;67(8):6495-6507. doi: 10.1021/acs.jmedchem.3c02416. Epub 2024 Apr 12.
3
The expanding repertoire of covalent warheads for drug discovery.
Drug Discov Today. 2023 Dec;28(12):103799. doi: 10.1016/j.drudis.2023.103799. Epub 2023 Oct 13.
4
Therapeutic Potential of Antiviral Peptides against the NS2B/NS3 Protease of Zika Virus.
ACS Omega. 2023 Sep 13;8(38):35207-35218. doi: 10.1021/acsomega.3c04903. eCollection 2023 Sep 26.
5
Alkyne as a Latent Warhead to Covalently Target SARS-CoV-2 Main Protease.
J Med Chem. 2023 Sep 14;66(17):12237-12248. doi: 10.1021/acs.jmedchem.3c00810. Epub 2023 Aug 18.
6
PROTACs: A novel strategy for cancer drug discovery and development.
MedComm (2020). 2023 May 29;4(3):e290. doi: 10.1002/mco2.290. eCollection 2023 Jun.
7
AI-Aided Search for New HIV-1 Protease Ligands.
Biomolecules. 2023 May 18;13(5):858. doi: 10.3390/biom13050858.
8
Using AlphaFold Predictions in Viral Research.
Curr Issues Mol Biol. 2023 Apr 21;45(4):3705-3732. doi: 10.3390/cimb45040240.
9
Exploring allosteric hits of the NS2B-NS3 protease of DENV2 by structure-guided screening.
Comput Biol Chem. 2023 Jun;104:107876. doi: 10.1016/j.compbiolchem.2023.107876. Epub 2023 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验