IEEE J Biomed Health Inform. 2024 Jul;28(7):4361-4372. doi: 10.1109/JBHI.2024.3383221. Epub 2024 Jul 2.
Molecular property prediction has gained substantial attention due to its potential for various bio-chemical applications. Numerous attempts have been made to enhance the performance by combining multiple molecular representations (1D, 2D, and 3D). However, most prior works only merged a limited number of representations or tried to embed multiple representations through a single network without using representation-specific networks. Furthermore, the heterogeneous characteristics of each representation made the fusion more challenging. Addressing these challenges, we introduce the Fusion Transformer for Multiple Molecular Representations (FTMMR) framework. Our strategy employs three distinct representation-specific networks and integrates information from each network using a fusion transformer architecture to generate fused representations. Additionally, we use self-supervised learning methods to align heterogeneous representations and to effectively utilize the limited chemical data available. In particular, we adopt a combinatorial loss function to leverage the contrastive loss for all three representations. We evaluate the performance of FTMMR using seven benchmark datasets, demonstrating that our framework outperforms existing fusion and self-supervised methods.
由于在各种生物化学应用方面的潜力,分子性质预测已经引起了广泛关注。为了提高性能,人们已经尝试了许多方法,将多种分子表示形式(1D、2D 和 3D)结合起来。然而,大多数先前的工作只合并了有限数量的表示形式,或者试图通过单个网络嵌入多个表示形式,而不使用特定于表示形式的网络。此外,每个表示形式的异构特性使得融合更加具有挑战性。为了解决这些挑战,我们引入了用于多种分子表示形式的融合转换器(FTMMR)框架。我们的策略采用了三个不同的特定于表示形式的网络,并使用融合转换器架构从每个网络中集成信息,以生成融合表示形式。此外,我们使用自监督学习方法来对齐异构表示形式,并有效地利用有限的化学数据。特别是,我们采用了组合损失函数来利用所有三种表示形式的对比损失。我们使用七个基准数据集评估了 FTMMR 的性能,结果表明我们的框架优于现有的融合和自监督方法。