Suppr超能文献

Fe(II)和腐殖酸对细菌纤维素热解得到的氧化碳纳米纤维上 U(VI) 迁移的影响。

Effects of Fe(II) and humic acid on U(VI) mobilization onto oxidized carbon nanofibers derived from the pyrolysis of bacterial cellulose.

机构信息

College of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China; Shaoxing Raw Water Group Co., LTD., Shaoxing 312000, PR China.

College of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China.

出版信息

Int J Biol Macromol. 2024 May;266(Pt 1):131210. doi: 10.1016/j.ijbiomac.2024.131210. Epub 2024 Mar 27.

Abstract

The effects of Fe(II) and humic acid on U(VI) immobilization onto oxidized carbon nanofibers (Ox-CNFs, pyrolysis of bacterial cellulose) were investigated by batch, spectroscopic and modeling techniques, with results suggesting that, Ox-CNFs exhibited fast adsorption rate (adsorption equilibrium within 3 h), high adsorption performance (maximum adsorption capacity of 208.4 mg/g), good recyclability (no notable change after five regenerations) in the presence of Fe(II) towards U(VI) from aqueous solutions (e.g., 40 % reduction and 10 % adsorption at pH 8.0), which was attributed to the various oxygen-containing functional groups, excellent chemical stability, large specific surface area and high redox effect. U(VI) adsorption increased with increasing pH from 2.0 to 5.0, then high-level plateau and remarkable decrease were observed at 5.0-6.0 and at pH > 6.0, respectively. According to FT-IR and XPS analysis, a negative correlation between U(VI) reduction and organic in the presence of Fe(II) implied that U(VI) reduction was driven by Fe(II) while inhibited by humic acid. The interaction mechanism of U(VI) on Ox-CNFs was demonstrated to be adsorption and ion exchange at low pH and reduction at high pH according to XPS and surface complexation modeling. These findings filled the knowledge gaps pertaining to the effect of Fe(II) on the transformation and fate of U(VI) in the actual environment. This carbon material with distinctive performance and unique topology offers a potential platform for actual application in environmental remediation.

摘要

采用批量实验、光谱和建模技术研究了 Fe(II)和腐殖酸对氧化碳纤维纳米纤维(Ox-CNFs,细菌纤维素热解)固定 U(VI)的影响,结果表明,在 Fe(II)存在的情况下,Ox-CNFs 对水溶液中的 U(VI)具有快速吸附速率(3 h 内达到吸附平衡)、高吸附性能(最大吸附容量为 208.4 mg/g)、良好的可循环性(五次再生后没有明显变化),其对 U(VI)的去除率在 pH 8.0 时可达 40%,吸附量为 10%,这归因于其含有各种含氧官能团、化学稳定性好、比表面积大、氧化还原效应强。U(VI)的吸附随着 pH 值从 2.0 增加到 5.0 而增加,然后在 5.0-6.0 和 pH>6.0 时分别出现高水平平台和显著下降。根据傅里叶变换红外光谱(FT-IR)和 X 射线光电子能谱(XPS)分析,在 Fe(II)存在的情况下,U(VI)的还原与有机物质之间存在负相关,这表明 U(VI)的还原是由 Fe(II)驱动的,同时受到腐殖酸的抑制。根据 XPS 和表面络合模型,U(VI)在 Ox-CNFs 上的相互作用机制被证明是在低 pH 值下的吸附和离子交换,以及在高 pH 值下的还原。这些发现填补了关于 Fe(II)对实际环境中 U(VI)转化和归宿影响的知识空白。这种具有独特性能和拓扑结构的碳材料为其在环境修复中的实际应用提供了潜在的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验