Suppr超能文献

生物标志物的表达和临床病理因素是否可作为局部晚期宫颈癌新辅助化疗疗效的预测标志物?

Are biomarkers expression and clinical-pathological factors predictive markers of the efficacy of neoadjuvant chemotherapy for locally advanced cervical cancer?

机构信息

Gynecological Oncology Department, Fondazione IRCCS Istituto Dei Tumori, Milan, Italy.

Gynecological Oncology Department, Fondazione IRCCS Istituto Dei Tumori, Milan, Italy.

出版信息

Eur J Surg Oncol. 2024 Jun;50(6):108311. doi: 10.1016/j.ejso.2024.108311. Epub 2024 Mar 25.

Abstract

INTRODUCTION

To predict the overall pathologic response to neoadjuvant chemotherapy (NACT) of patients with locally advanced cervical cancer (LACC) creating a prediction model based on clinical-pathological factors and biomarkers (p53, Bcl1 and Bcl2) and to evaluate the prognostic outcomes of NACT.

MATERIALS AND METHODS

This is a retrospective study of 88 consecutive patients with LACC who underwent NACT followed by nerve sparing surgery with retroperitoneal lymphadenectomy at National Cancer Institute of Milan, between January 2000 and June 2013. Clinical pathologic data were retrieved from the institutional database. Biomarkers (p53, Bcl1 and Bcl2) were evaluated before and after NACT in the specimen. To investigate their role as predictors of response, we tried several statistical machine learning algorithms.

RESULTS

Responders to NACT showed a 5-years survival between 100%(CR) and 85.7%(PR). Clinical factors were the most important predictor of response. Age, BMI and grade represented the most important predictors of response at random forest analysis. Tree-based boosting revealed that after adjusting for other prognostic factors, age, grade, BMI and tumor size were independent predictors of response to NACT, while p53 was moderately related to response to NACT. Area under the curve (crude estimate): 0.871. Whereas Bcl1 and Bcl2, were not predictors for response to NACT. The final logistic regression reported that grade was the only significant predictor of response to NACT.

CONCLUSION

Combined model that included clinical pathologic variables plus p53 cannot predict response to NACT. Despite this, NACT remain a safe treatment in chemosensitive patients avoiding collateral sequelae related to chemo-radiotherapy.

摘要

简介

为了预测局部晚期宫颈癌(LACC)患者接受新辅助化疗(NACT)的总体病理反应,我们创建了一个基于临床病理因素和生物标志物(p53、Bcl1 和 Bcl2)的预测模型,并评估了 NACT 的预后结果。

材料与方法

这是一项回顾性研究,共纳入 88 例在米兰国家癌症研究所接受 NACT 后行保留神经的广泛子宫切除术和腹膜后淋巴结清扫术的 LACC 连续患者,入组时间为 2000 年 1 月至 2013 年 6 月。临床病理数据来自机构数据库。在标本中评估生物标志物(p53、Bcl1 和 Bcl2)在 NACT 前后的变化。为了研究它们作为反应预测因子的作用,我们尝试了几种统计机器学习算法。

结果

NACT 缓解者的 5 年生存率为 100%(完全缓解[CR])至 85.7%(部分缓解[PR])。临床因素是反应的最重要预测因子。在随机森林分析中,年龄、BMI 和分级代表了反应的最重要预测因子。基于树的提升法显示,在校正其他预后因素后,年龄、分级、BMI 和肿瘤大小是 NACT 反应的独立预测因子,而 p53 与 NACT 反应中度相关。曲线下面积(原始估计值):0.871。而 Bcl1 和 Bcl2 不是 NACT 反应的预测因子。最终的逻辑回归报告显示,分级是 NACT 反应的唯一显著预测因子。

结论

包含临床病理变量加 p53 的联合模型不能预测 NACT 的反应。尽管如此,NACT 仍然是一种安全的治疗方法,适用于化疗敏感的患者,避免了与放化疗相关的继发性并发症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验