Suppr超能文献

一氧化碳对无烟煤内部竞争吸附影响的分子模拟

Molecular modeling of CO affecting competitive adsorption within anthracite coal.

作者信息

Hong Lin, Lin Jiaxing, Gao Dameng, Zheng Dan

机构信息

College of Safety Science & Engineering, Liaoning Technical University, No. 188 Longwan South Street, Huludao, 125105, Liaoning, China.

Key Laboratory of Mine Thermodynamic Disaster & Control of Ministry of Education, Liaoning Technical University, Huludao, 125105, Liaoning, China.

出版信息

Sci Rep. 2024 Mar 30;14(1):7586. doi: 10.1038/s41598-024-58483-z.

Abstract

This study aimed to investigate the adsorption properties of CO, CH, and N on anthracite. A molecular structural model of anthracite (CHON) was established. Simulations were performed for the adsorption properties of single-component and multi-component gases at various temperatures, pressures, and gas ratios. The grand canonical ensemble Monte Carlo approach based on molecular mechanics and dynamics theories was used to perform the simulations. The results showed that the isotherms for the adsorption of single-component CO, CH, and N followed the Langmuir formula, and the CO adsorption isotherm growth gradient was negatively correlated with pressure but positively correlated with temperature. When the CO injection in the gas mixture was increased from 1 to 3% for the multi-component gas adsorption, the proportion of CO adsorption rose from 1/3 to 2/3, indicating that CO has a competing-adsorption advantage. The CO adsorption decreased faster with increasing temperature, indicating that the sensitivity of CO to temperature is stronger than that of CH and N. The adsorbent potential energies of CO, CH, and N diminished with rising temperature in the following order: CO < CH < N.

摘要

本研究旨在探究一氧化碳(CO)、甲烷(CH)和氮气(N)在无烟煤上的吸附特性。建立了无烟煤(CHON)的分子结构模型。针对单组分和多组分气体在不同温度、压力和气体比例下的吸附特性进行了模拟。采用基于分子力学和动力学理论的巨正则系综蒙特卡罗方法进行模拟。结果表明,单组分CO、CH和N的吸附等温线遵循朗缪尔公式,且CO吸附等温线的增长梯度与压力呈负相关,与温度呈正相关。对于多组分气体吸附,当混合气中CO注入量从1%增加到3%时,CO吸附比例从1/3升至2/3,表明CO具有竞争吸附优势。随着温度升高,CO吸附下降更快,表明CO对温度的敏感性强于CH和N。CO、CH和N的吸附剂势能随温度升高按CO<CH<N的顺序减小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6e/10981731/448cdf44874e/41598_2024_58483_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验