Suppr超能文献

靶向开发和优化小分子冰晶再结晶抑制剂(IRIs)用于生物系统的低温保存。

Targeted development and optimization of small-molecule ice recrystallization inhibitors (IRIs) for the cryopreservation of biological systems.

机构信息

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.

出版信息

Cryo Letters. 2024 Mar-Apr;45(2):69-87.

Abstract

Despite the routine use of cryopreservation for the storage of biological materials, its outcomes are often sub-optimal (including reduced post-thaw viability, recovery, and functionality) due to the damage caused by uncontrolled ice growth. Traditional cryoprotective agents (CPAs), including dimethyl sulfoxide (DMSO), fail to prevent damage caused by ice growth and concerns over CPA cytotoxicity have fostered an increased interest in developing improved CPAs and cryoprotection strategies. The inhibition of ice recrystallization by natural antifreeze (glyco)proteins [AF(G)Ps] to improve cryopreservation outcomes has been examined; however, the ice binding properties of these substances and their challenging large-scale production make them poor CPA candidates. Therefore, the development and deployment of biocompatible, small-molecule ice recrystallization inhibitors (IRIs) for use as CPAs is a worthwhile objective. Extensive structure-activity relationship studies on AF(G)Ps revealed that simple carbohydrate derivatives could inhibit ice recrystallization. It was later discovered that this activity could be fine-tuned by delicately balancing the molecule's hydrophobicity and hydrophilicity. Current generation small-molecule IRIs have been meticulously designed to avoid binding to the surface of ice and subsequent biological testing (for both cytotoxicity and cryopreservation efficacy) has demonstrated significant improvements to the cryopreservation outcomes of several cell types. However, an individualized cell-specific approach for the simultaneous assessment of multiple cryopreservation outcomes is necessary to realize the full potential of IRIs as CPAs. This article provides a detailed overview of the development of small-molecule carbohydrate-based IRIs and highlights the crucial cell-specific biological considerations that must be taken into account when assessing cryopreservation outcomes. https://doi.org/10.54680/fr24210110112.

摘要

尽管冷冻保存已被常规用于生物材料的储存,但由于不受控制的冰生长造成的损伤,其结果往往并不理想(包括降低冻后活力、回收率和功能)。传统的冷冻保护剂(CPAs),包括二甲基亚砜(DMSO),无法防止冰生长造成的损伤,而且对 CPAs 细胞毒性的担忧也促使人们越来越关注开发改良的 CPAs 和冷冻保护策略。通过天然抗冻(糖)蛋白[AF(G)Ps]抑制冰晶重结晶以改善冷冻保存效果已经得到了研究;然而,这些物质的冰结合特性及其具有挑战性的大规模生产使其成为较差的 CPA 候选物。因此,开发和部署生物相容的、小分子冰晶重结晶抑制剂(IRIs)作为 CPAs 是一个有价值的目标。对 AF(G)Ps 的广泛结构-活性关系研究表明,简单的碳水化合物衍生物可以抑制冰晶重结晶。后来发现,通过巧妙地平衡分子的疏水性和亲水性,可以对这种活性进行微调。目前一代的小分子 IRI 经过精心设计,以避免与冰表面结合,随后进行的细胞毒性和冷冻保存效果的生物测试表明,几种细胞类型的冷冻保存效果都得到了显著改善。然而,为了充分发挥 IRI 作为 CPAs 的潜力,需要针对多种冷冻保存效果进行个体化的细胞特异性评估。本文详细概述了小分子碳水化合物基 IRI 的开发,并强调了在评估冷冻保存效果时必须考虑的关键细胞特异性生物学考虑因素。https://doi.org/10.54680/fr24210110112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验