Jovic Thomas Harry, Zhao Feihu, Jia Henry, Doak Shareen Heather, Whitaker Iain Stuart
Reconstructive Surgery & Regenerative Medicine Research Centre, Swansea University, Swansea, United Kingdom.
Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea, United Kingdom.
Front Bioeng Biotechnol. 2024 Mar 15;12:1360089. doi: 10.3389/fbioe.2024.1360089. eCollection 2024.
This study aimed to determine whether a dynamic orbital shaking culture system could enhance the cartilage production and viability of bioengineered nasoseptal cartilage. Human nasal chondrocytes were seeded onto nanocellulose-alginate biomaterials and cultured in static or dynamic conditions for 14 days. Quantitative polymerase chain reaction for chondrogenic gene expression (type 2 collagen, aggrecan and ) was performed, demonstrating a transient rise in expression at 1 and 7 days of culture, followed by a rise at 7 and 14 days in Aggrecan (184.5-fold increase, < 0.0001) and Type 2 Collagen (226.3-fold increase, = 0.049) expression. Samples were analysed histologically for glycosaminoglycan content using Alcian blue staining and demonstrated increased matrix formation in dynamic culture. Superior cell viability was identified in the dynamic conditions through live-dead and alamarBlue assays. Computational analysis was used to determine the shear stress experienced by cells in the biomaterial in the dynamic conditions and found that the mechanical stimulation exerted was minimal (fluid shear stress <0.02 mPa, fluid pressure <48 Pa). We conclude that the use of an orbital shaking system exerts biologically relevant effects on bioengineered nasoseptal cartilage independently of the expected thresholds of mechanical stimulation, with implications for optimising future cartilage tissue engineering efforts.
本研究旨在确定动态轨道振荡培养系统是否能提高生物工程鼻中隔软骨的软骨生成及活力。将人鼻软骨细胞接种到纳米纤维素 - 藻酸盐生物材料上,并在静态或动态条件下培养14天。进行了软骨生成基因表达(Ⅱ型胶原蛋白、聚集蛋白聚糖等)的定量聚合酶链反应,结果显示在培养第1天和第7天 表达出现短暂升高,随后在第7天和第14天聚集蛋白聚糖(增加184.5倍,<0.0001)和Ⅱ型胶原蛋白(增加226.3倍, = 0.049)表达升高。使用阿尔辛蓝染色对样本进行组织学分析以检测糖胺聚糖含量,结果表明动态培养中基质形成增加。通过活死细胞和alamarBlue检测在动态条件下鉴定出更高的细胞活力。使用计算分析来确定动态条件下生物材料中细胞所经历的剪切应力,发现施加的机械刺激极小(流体剪切应力<0.02 mPa,流体压力<48 Pa)。我们得出结论,使用轨道振荡系统对生物工程鼻中隔软骨施加了与生物学相关的影响,且独立于预期的机械刺激阈值,这对优化未来的软骨组织工程研究具有重要意义。