Center for Health Information Partnerships, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
Front Immunol. 2024 Mar 15;15:1331959. doi: 10.3389/fimmu.2024.1331959. eCollection 2024.
Immune checkpoint inhibitor-induced inflammatory arthritis (ICI-IA) poses a major clinical challenge to ICI therapy for cancer, with 13% of cases halting ICI therapy and ICI-IA being difficult to identify for timely referral to a rheumatologist. The objective of this study was to rapidly identify ICI-IA patients in clinical data and assess associated immune-related adverse events (irAEs) and risk factors.
We conducted a retrospective study of the electronic health records (EHRs) of 89 patients who developed ICI-IA out of 2451 cancer patients who received ICI therapy at Northwestern University between March 2011 to January 2021. Logistic regression and random forest machine learning models were trained on all EHR diagnoses, labs, medications, and procedures to identify ICI-IA patients and EHR codes indicating ICI-IA. Multivariate logistic regression was then used to test associations between ICI-IA and cancer type, ICI regimen, and comorbid irAEs.
Logistic regression and random forest models identified ICI-IA patients with accuracies of 0.79 and 0.80, respectively. Key EHR features from the random forest model included ICI-IA relevant features (joint pain, steroid prescription, rheumatoid factor tests) and features suggesting comorbid irAEs (thyroid function tests, pruritus, triamcinolone prescription). Compared to 871 adjudicated ICI patients who did not develop arthritis, ICI-IA patients had higher odds of developing cutaneous (odds ratio [OR]=2.66; 95% Confidence Interval [CI] 1.63-4.35), endocrine (OR=2.09; 95% CI 1.15-3.80), or gastrointestinal (OR=2.88; 95% CI 1.76-4.72) irAEs adjusting for demographics, cancer type, and ICI regimen. Melanoma (OR=1.99; 95% CI 1.08-3.65) and renal cell carcinoma (OR=2.03; 95% CI 1.06-3.84) patients were more likely to develop ICI-IA compared to lung cancer patients. Patients on nivolumab+ipilimumab were more likely to develop ICI-IA compared to patients on pembrolizumab (OR=1.86; 95% CI 1.01-3.43).
Our machine learning models rapidly identified patients with ICI-IA in EHR data and elucidated clinical features indicative of comorbid irAEs. Patients with ICI-IA were significantly more likely to also develop cutaneous, endocrine, and gastrointestinal irAEs during their clinical course compared to ICI therapy patients without ICI-IA.
免疫检查点抑制剂诱导的炎症性关节炎(ICI-IA)对癌症的免疫检查点抑制剂治疗构成了重大临床挑战,有 13%的病例会停止免疫检查点抑制剂治疗,且 ICI-IA 很难及时转介给风湿病医生。本研究的目的是在临床数据中快速识别 ICI-IA 患者,并评估相关的免疫相关不良事件(irAE)和危险因素。
我们对西北大学 2011 年 3 月至 2021 年 1 月期间接受免疫检查点抑制剂治疗的 2451 例癌症患者中的 89 例发生 ICI-IA 的患者的电子健康记录(EHR)进行了回顾性研究。我们使用所有 EHR 诊断、实验室、药物和程序来训练逻辑回归和随机森林机器学习模型,以识别 ICI-IA 患者和表示 ICI-IA 的 EHR 代码。然后,我们使用多变量逻辑回归来检验 ICI-IA 与癌症类型、ICI 方案和合并的 irAE 之间的关联。
逻辑回归和随机森林模型分别识别 ICI-IA 患者的准确率为 0.79 和 0.80。随机森林模型的关键 EHR 特征包括与 ICI-IA 相关的特征(关节痛、皮质类固醇处方、类风湿因子检测)和提示合并 irAE 的特征(甲状腺功能检测、瘙痒、曲安奈德处方)。与 871 名经裁决未发生关节炎的 ICI 患者相比,ICI-IA 患者发生皮肤(比值比 [OR]=2.66;95%置信区间 [CI] 1.63-4.35)、内分泌(OR=2.09;95% CI 1.15-3.80)或胃肠道(OR=2.88;95% CI 1.76-4.72)irAE 的可能性更高,调整了人口统计学、癌症类型和 ICI 方案。与肺癌患者相比,黑色素瘤(OR=1.99;95% CI 1.08-3.65)和肾细胞癌(OR=2.03;95% CI 1.06-3.84)患者更有可能发生 ICI-IA。与使用 pembrolizumab 的患者相比,使用 nivolumab+ipilimumab 的患者发生 ICI-IA 的可能性更高(OR=1.86;95% CI 1.01-3.43)。
我们的机器学习模型在 EHR 数据中快速识别出患有 ICI-IA 的患者,并阐明了提示合并 irAE 的临床特征。与未发生 ICI-IA 的 ICI 治疗患者相比,发生 ICI-IA 的患者在其临床病程中更有可能同时发生皮肤、内分泌和胃肠道 irAE。