Suppr超能文献

自动调整:选择用于推断艾滋病毒传播集群的距离阈值。

AUTO-TUNE: SELECTING THE DISTANCE THRESHOLD FOR INFERRING HIV TRANSMISSION CLUSTERS.

作者信息

Weaver Steven, Dávila-Conn Vanessa, Ji Daniel, Verdonk Hannah, Ávila-Ríos Santiago, Leigh Brown Andrew J, Wertheim Joel O, Kosakovsky Pond Sergei L

机构信息

Center for Viral Evolution, Temple University, Philadelphia, PA, USA.

Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico.

出版信息

bioRxiv. 2024 Mar 14:2024.03.11.584522. doi: 10.1101/2024.03.11.584522.

Abstract

Molecular surveillance of viral pathogens and inference of transmission networks from genomic data play an increasingly important role in public health efforts, especially for HIV-1. For many methods, the genetic distance threshold used to connect sequences in the transmission network is a key parameter informing the properties of inferred networks. Using a distance threshold that is too high can result in a network with many spurious links, making it difficult to interpret. Conversely, a distance threshold that is too low can result in a network with too few links, which may not capture key insights into clusters of public health concern. Published research using the HIV-TRACE software package frequently uses the default threshold of 0.015 substitutions/site for HIV pol gene sequences, but in many cases, investigators heuristically select other threshold parameters to better capture the underlying dynamics of the epidemic they are studying. Here, we present a general heuristic scoring approach for tuning a distance threshold adaptively, which seeks to prevent the formation of giant clusters. We prioritize the ratio of the sizes of the largest and the second largest cluster, maximizing the number of clusters present in the network. We apply our scoring heuristic to outbreaks with different characteristics, such as regional or temporal variability, and demonstrate the utility of using the scoring mechanism's suggested distance threshold to identify clusters exhibiting risk factors that would have otherwise been more difficult to identify. For example, while we found that a 0.015 substitutions/site distance threshold is typical for US-like epidemics, recent outbreaks like the CRF07_BC subtype among men who have sex with men (MSM) in China have been found to have a lower optimal threshold of 0.005 to better capture the transition from injected drug use (IDU) to MSM as the primary risk factor. Alternatively, in communities surrounding Lake Victoria in Uganda, where there has been sustained hetero-sexual transmission for many years, we found that a larger distance threshold is necessary to capture a more risk factor-diverse population with sparse sampling over a longer period of time. Such identification may allow for more informed intervention action by respective public health officials.

摘要

病毒病原体的分子监测以及从基因组数据推断传播网络在公共卫生工作中发挥着越来越重要的作用,尤其是对于HIV-1而言。对于许多方法,用于在传播网络中连接序列的遗传距离阈值是一个关键参数,它决定了推断网络的属性。使用过高的距离阈值会导致网络出现许多虚假链接,难以解释。相反,过低的距离阈值会导致网络链接过少,可能无法捕捉到对公共卫生相关集群的关键见解。使用HIV-TRACE软件包发表的研究经常将HIV pol基因序列的默认阈值设为0.015替换/位点,但在许多情况下,研究人员会凭经验选择其他阈值参数,以更好地捕捉他们所研究疫情的潜在动态。在此,我们提出一种通用的启发式评分方法,用于自适应调整距离阈值,旨在防止形成巨大集群。我们将最大集群与第二大集群的大小之比作为优先考虑因素,使网络中存在的集群数量最大化。我们将评分启发式方法应用于具有不同特征的疫情爆发,如区域或时间变异性,并展示使用评分机制建议的距离阈值来识别具有风险因素的集群的效用,否则这些集群可能更难识别。例如,虽然我们发现0.015替换/位点的距离阈值对于类似美国的疫情是典型的,但在中国男男性行为者(MSM)中出现的CRF07_BC亚型等近期疫情爆发中,发现较低的最佳阈值0.005能更好地捕捉从注射吸毒(IDU)到MSM作为主要风险因素的转变。或者,在乌干达维多利亚湖周边社区,多年来一直存在持续的异性传播,我们发现需要更大的距离阈值来捕捉在更长时间内抽样稀疏且风险因素多样的人群。这样的识别可能使各公共卫生官员能够采取更明智的干预行动。

相似文献

1
AUTO-TUNE: SELECTING THE DISTANCE THRESHOLD FOR INFERRING HIV TRANSMISSION CLUSTERS.
bioRxiv. 2024 Mar 14:2024.03.11.584522. doi: 10.1101/2024.03.11.584522.
2
AUTO-TUNE: selecting the distance threshold for inferring HIV transmission clusters.
Front Bioinform. 2024 Jul 10;4:1400003. doi: 10.3389/fbinf.2024.1400003. eCollection 2024.
3
Analysis of the Driving Factors of Active and Rapid Growth Clusters Among CRF07_BC-Infected Patients in a Developed Area in Eastern China.
Open Forum Infect Dis. 2021 Feb 4;8(3):ofab051. doi: 10.1093/ofid/ofab051. eCollection 2021 Mar.
4
HIV-1 genetic transmission networks among men who have sex with men in Kunming, China.
PLoS One. 2018 Apr 26;13(4):e0196548. doi: 10.1371/journal.pone.0196548. eCollection 2018.
6
Characteristics and growth of the genetic HIV transmission network of Mexico City during 2020.
J Int AIDS Soc. 2021 Nov;24(11):e25836. doi: 10.1002/jia2.25836.
7
Molecular network characteristics and drug resistance analysis of 392 newly reported MSM HIV/AIDS cases in Chongqing, China.
Front Public Health. 2024 Jun 6;12:1308784. doi: 10.3389/fpubh.2024.1308784. eCollection 2024.
8
HIV transmission networks among transgender women in Los Angeles County, CA, USA: a phylogenetic analysis of surveillance data.
Lancet HIV. 2019 Mar;6(3):e164-e172. doi: 10.1016/S2352-3018(18)30359-X. Epub 2019 Feb 11.

本文引用的文献

1
Distribution pattern, molecular transmission networks, and phylodynamic of hepatitis C virus in China.
PLoS One. 2023 Dec 21;18(12):e0296053. doi: 10.1371/journal.pone.0296053. eCollection 2023.
2
Recommendations on data sharing in HIV drug resistance research.
PLoS Med. 2023 Sep 22;20(9):e1004293. doi: 10.1371/journal.pmed.1004293. eCollection 2023 Sep.
3
The distribution of hepatitis C viral genotypes shifted among chronic hepatitis C patients in Yunnan, China, between 2008-2018.
Front Cell Infect Microbiol. 2023 Jul 11;13:1092936. doi: 10.3389/fcimb.2023.1092936. eCollection 2023.
4
A systematic outbreak investigation of SARS-CoV-2 transmission clusters in a tertiary academic care center.
Antimicrob Resist Infect Control. 2023 Apr 21;12(1):38. doi: 10.1186/s13756-023-01242-y.
6
Utility of SARS-CoV-2 Genomic Sequencing for Understanding Transmission and School Outbreaks.
Pediatr Infect Dis J. 2023 Apr 1;42(4):324-331. doi: 10.1097/INF.0000000000003834. Epub 2023 Jan 26.
7
9
Characterizing genetic transmission networks among newly diagnosed HIV-1 infected individuals in eastern China: 2012-2016.
PLoS One. 2022 Jun 16;17(6):e0269973. doi: 10.1371/journal.pone.0269973. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验