Guo Xiaohan, Kent Sean, Maity Arnab, Zhong Wei
Oncology Biometrics, Oncology Research and Development, Pfizer, New York, US.
J Biopharm Stat. 2025 May;35(3):407-423. doi: 10.1080/10543406.2024.2333530. Epub 2024 Apr 1.
Bayesian logistic regression model (BLRM) is widely used to guide dose escalation decisions in phase 1 oncology trials. An important feature of BLRM design is the appealing safety performance due to its escalation with overdose control (EWOC). However, some recent literature indicates that BLRM with EWOC may have a relatively low probability to find the maximum tolerated dose (MTD) compared to some other dose escalation designs. This work discusses this design problem and proposes a practical solution to improve the performance of BLRM design. Specifically, we suggest increasing the EWOC cutoff from routine value 0.25 to a value between 0.3 and 0.4, which will increase the chance of finding the correct MTD with minimal compromise to overdosing risk. Our comparative simulation studies indicate that BLRM with an increased EWOC cutoff has comparable operating characteristics on the correct MTD selection and over-toxicity control as other dose escalation designs (BOIN, mTPI, keyboard, etc.). Moreover, we compare the methodology and operating characteristics of BLRM designs with various decision rules that allow more flexible overdosing control. A case study of dose escalation in a recent phase 1 oncology trial is provided to show how BLRM with optimal EWOC cutoff operates well in practice.
贝叶斯逻辑回归模型(BLRM)在肿瘤学1期试验中被广泛用于指导剂量递增决策。BLRM设计的一个重要特点是由于其带有过量控制的递增方式(EWOC)而具有吸引人的安全性表现。然而,最近的一些文献表明,与其他一些剂量递增设计相比,带有EWOC的BLRM找到最大耐受剂量(MTD)的概率可能相对较低。这项工作讨论了这个设计问题,并提出了一个切实可行的解决方案来提高BLRM设计的性能。具体而言,我们建议将EWOC临界值从常规值0.25提高到0.3至0.4之间的值,这将在对过量用药风险影响最小的情况下增加找到正确MTD的机会。我们的比较模拟研究表明,具有提高的EWOC临界值的BLRM在正确的MTD选择和毒性控制方面具有与其他剂量递增设计(BOIN、mTPI、键盘等)相当的操作特性。此外,我们比较了具有各种决策规则的BLRM设计的方法和操作特性,这些决策规则允许更灵活的过量用药控制。提供了一个近期肿瘤学1期试验中剂量递增的案例研究,以展示具有最佳EWOC临界值的BLRM在实际中如何良好运行。