Suppr超能文献

基于患者水平数据的协变量调整元分析预测(CA-MAP)先验,用于借鉴历史数据。

Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data.

机构信息

Takeda Pharmaceuticals, Cambridge, MA, United States.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

出版信息

J Biopharm Stat. 2024 Oct;34(6):944-952. doi: 10.1080/10543406.2024.2330206. Epub 2024 Apr 1.

Abstract

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

摘要

利用历史数据在提高药物开发和决策过程的效率方面越来越普遍。临床试验中各试验间异质性的根本问题是使这些方法成为制药行业标准实践的障碍。历史借鉴的常用方法根据历史和当前数据中结果的相似性来折扣借鉴信息。然而,由于研究设计、患者特征和治疗标准的差异,个体临床试验及其结果本质上是异质的。此外,当历史和当前数据之间存在一致的协变量效应时,协变量分布的差异可能导致临床结果数据不一致。在这种情况下,即使人口水平的结局总结不同,借鉴历史数据仍然是有利的。在本文中,我们提出了一种协变量调整的荟萃分析预测(CA-MAP)先验方法,用于历史对照借鉴。为每个协变量效应分配一个 MAP 先验,允许通过当前和历史数据中协变量效应的一致性来确定借鉴的数量。这种方法将试验间异质性与协变量水平异质性相结合,以调整借鉴的信息量。我们的方法是独特的,因为它直接对协变量效应进行建模,而不是使用协变量来选择要借鉴的相似人群。总之,我们提出的基于患者水平的 MAP 先验扩展允许根据协变量效应的相似性而不是临床结局的相似性来决定借鉴历史对照的数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验