Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
Free Radic Biol Med. 2024 Jun;218:105-119. doi: 10.1016/j.freeradbiomed.2024.03.025. Epub 2024 Mar 31.
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
线粒体除了在能量产生中发挥关键作用外,还拥有独特的基因组,其表观遗传调控与核 DNA 的调控相似。本文深入探讨了新兴但迅速发展的线粒体表观遗传学和线粒体表观基因组学领域,探索了调控线粒体 DNA(mtDNA)的复杂调控机制。这些机制包括 mtDNA 甲基化、非编码 RNA(ncRNA)的影响以及线粒体蛋白质的翻译后修饰。这些表观遗传修饰共同精心协调线粒体基因的转录、复制和代谢,从而根据细胞内需求和环境刺激的动态相互作用来校准线粒体功能。值得注意的是,线粒体表观遗传途径的失调与线粒体功能障碍以及一系列人类疾病(包括神经退行性疾病、癌症、代谢紊乱和心血管疾病)的关系日益密切。本综述综合了目前的知识状况,强调了该领域的最新突破和创新。它讨论了高分辨率线粒体表观基因组图谱绘制、血液或组织 mtDNA 表观遗传标志物的诊断和预后效用,以及线粒体表观遗传药物的广阔前景。此外,它还探讨了线粒体表观遗传学和线粒体表观基因组学在精准医学中的变革潜力。通过采用维持线粒体体内平衡的治疗诊断方法,本文强调了线粒体表观遗传学在开拓医学科学新前沿方面的关键作用。