Fan Yining, Li Ting, Li Bin, Hu Anjun, Li Dongfen, Li Kun, Yang Borui, Pan Yu, Liu Jing, Long Jianping
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
College of Computer Science and Cyber Security, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
Nanoscale. 2024 Apr 25;16(16):8096-8107. doi: 10.1039/d3nr06505g.
Metal single-atom catalysts have attracted widespread attention in the field of lithium-oxygen batteries due to their unique active sites, high catalytic selectivity, and near total atomic utilization efficiency. Isolated metal atoms not only serve as the active sites themselves, but also function as modulators, reversely regulating the surface electronic structure of the support to enhance its inherent electrocatalytic activities. Despite the potential of isolated metal atom-driven active sites, understanding the structure-activity relationship remains a challenge. In this study, we present a ruthenium single-atom doping-driven cost-effective and durable tricobalt tetroxide electrocatalyst with excellent oxygen electrode electrocatalytic activity. The lithium-oxygen battery with this catalyst as the oxygen electrode demonstrates high performance, achieving a capacity of up to 25 000 mA h g and maintaining good stability over 400 cycles at a current density of 100 mA g. This improvement is attributed to the exquisite control of the morphology and structure of the discharge product, lithium peroxide. The aresults of physical characterization and theoretical calculations reveal that isolated ruthenium atoms bond with the tetrahedral cobalt site, resulting in spin polarization enhancement and rearrangement of d orbital energy levels in cobalt. This rearrangement reduces the d orbital occupancy and promotes their transfer to the octahedral cobalt site, thereby enhancing its adsorption capacity for the oxygen-containing intermediates, and ultimately increasing the electrocatalytic activity of the oxygen evolution reaction. This work presents an innovative strategy to regulate the catalytic activity of metal oxides by introducing another metal single atom.
金属单原子催化剂因其独特的活性位点、高催化选择性和近乎完全的原子利用效率,在锂氧电池领域引起了广泛关注。孤立的金属原子不仅本身作为活性位点,还起到调节剂的作用,反向调节载体的表面电子结构,以增强其固有的电催化活性。尽管孤立的金属原子驱动的活性位点具有潜力,但理解结构-活性关系仍然是一个挑战。在本研究中,我们展示了一种由钌单原子掺杂驱动的具有成本效益且耐用的四氧化三钴电催化剂,其具有优异的氧电极电催化活性。以这种催化剂作为氧电极的锂氧电池表现出高性能,在电流密度为100 mA g时,容量高达25000 mA h g,并在400次循环中保持良好的稳定性。这种改进归因于对放电产物过氧化锂的形态和结构的精确控制。物理表征和理论计算结果表明,孤立的钌原子与四面体钴位点结合,导致钴的自旋极化增强和d轨道能级重排。这种重排减少了d轨道占据,并促进它们向八面体钴位点转移,从而增强其对含氧中间体的吸附能力,最终提高析氧反应的电催化活性。这项工作提出了一种通过引入另一种金属单原子来调节金属氧化物催化活性的创新策略。