Suppr超能文献

通过氢化作用揭示先进氧还原催化剂中密集铁 - 氮活性位点的低温组装

Unveiling Low Temperature Assembly of Dense Fe-N Active Sites via Hydrogenation in Advanced Oxygen Reduction Catalysts.

作者信息

Yin Shuhu, Li Yanrong, Yang Jian, Liu Jia, Yang Shuangli, Cheng Xiaoyang, Huang Huan, Huang Rui, Wang Chong-Tai, Jiang Yanxia, Sun Shigang

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, P. R. China.

Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2024 Jun 3;63(23):e202404766. doi: 10.1002/anie.202404766. Epub 2024 Apr 29.

Abstract

The single-atom Fe-N-C is a prominent material with exceptional reactivity in areas of sustainable energy and catalysis research. It is challenging to obtain the dense Fe-N site without the Fe nanoparticles (NPs) sintering during the Fe-N-C synthesis via high-temperature pyrolysis. Thus, a novel approach is devised for the Fe-N-C synthesis at low temperatures. Taking FeCl as Fe source, a hydrogen environment can facilitate oxygen removal and dichlorination processes in the synthesis, efficiently favouring Fe-N site formation without Fe NPs clustering at as low as 360 °C. We shed light on the reaction mechanism about hydrogen promoting Fe-N formation in the synthesis. By adjusting the temperature and duration, the Fe-N structural evolution and site density can be precisely tuned to directly influence the catalytic behaviour of the Fe-N-C material. The FeNC-H-360 catalyst demonstrates a remarkable Fe dispersion (8.3 wt %) and superior acid ORR activity with a half-wave potential of 0.85 V and a peak power density of 1.21 W cm in fuel cell. This method also generally facilitates the synthesis of various high-performance M-N-C materials (M=Fe, Co, Mn, Ni, Zn, Ru) with elevated single-atom loadings.

摘要

单原子Fe-N-C是一种在可持续能源和催化研究领域具有卓越反应活性的重要材料。在通过高温热解合成Fe-N-C的过程中,要在不使铁纳米颗粒(NPs)烧结的情况下获得密集的Fe-N位点具有挑战性。因此,设计了一种在低温下合成Fe-N-C的新方法。以FeCl作为铁源,氢气环境可以促进合成过程中的脱氧和二氯化过程,在低至360 °C的温度下有效促进Fe-N位点的形成,而不会出现铁纳米颗粒聚集的情况。我们揭示了合成过程中氢气促进Fe-N形成的反应机理。通过调节温度和持续时间,可以精确调整Fe-N结构的演变和位点密度,从而直接影响Fe-N-C材料的催化行为。FeNC-H-360催化剂在燃料电池中表现出显著的铁分散度(8.3 wt %)和优异的酸性氧还原反应活性,半波电位为0.85 V,峰值功率密度为1.21 W cm 。这种方法通常还便于合成具有更高单原子负载量的各种高性能M-N-C材料(M = Fe、Co、Mn、Ni、Zn、Ru)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验