Suppr超能文献

基于 SEER 数据库分析构建并验证用于预测 50 岁及以上甲状腺癌患者远处转移的列线图模型

Development and validation of a nomogram model for predicting distant metastasis of aged ≥50 patients with thyroid carcinoma: a SEER database analysis.

机构信息

Department of Head and Neck Thyroid, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.

出版信息

Eur Rev Med Pharmacol Sci. 2024 Mar;28(6):2351-2362. doi: 10.26355/eurrev_202403_35742.

Abstract

OBJECTIVE

This work aimed to construct and validate a model for predicting distant metastasis (DM) in thyroid carcinoma (TC) patients aged≥50.

PATIENTS AND METHODS

The research data were collected from the Surveillance, Epidemiology, and End Results (SEER) program databases via SEER*Stat software (https://seer.cancer.gov/). Logistics regression was used to screen the independent risk factors for TC patients. The nomogram was constructed and validated based on the logistics regression results for predicting DM occurrence in TC patients. Moreover, the characteristic curves (ROC) were used to assess the predictive performance. The decision analysis curve (DCA) and the calibration curve were used to test this nomogram's accuracy and discrimination. Additionally, we analyzed survival and risk scores in TC patients with metastasis using the Kaplan-Meier (KM) method.

RESULTS

A total of 11,166 TC patients were divided into a training set and a validation set. The results showed that topography (T), lymph node metastasis (N), and (grade) G were crucial risk factors for predicting DM. ROC analysis showed that the model had a good discriminative ability both in the training and validation set. The DCA curve showed greater net benefits across a range of DM risks for the nomogram in the training and validation set. Survival analyses showed that the metastasis cases with low-risk scores have shown a poorer prognosis in this study, both in the training and validation set.

CONCLUSIONS

The nomogram model had excellent predictive performance and net benefit for predicting DM of TC patients aged ≥50. The model can help doctors develop treatment plans for their patients.

摘要

目的

本研究旨在构建并验证一个用于预测≥50 岁甲状腺癌(TC)患者远处转移(DM)的模型。

方法

研究数据通过 SEER*Stat 软件(https://seer.cancer.gov/)从监测、流行病学和最终结果(SEER)程序数据库中收集。使用逻辑回归筛选 TC 患者的独立危险因素。基于逻辑回归结果构建并验证预测 TC 患者 DM 发生的列线图。此外,采用特征曲线(ROC)评估预测性能。决策分析曲线(DCA)和校准曲线用于测试该列线图的准确性和区分度。此外,我们使用 Kaplan-Meier(KM)方法分析了转移 TC 患者的生存和风险评分。

结果

共纳入 11166 例 TC 患者,分为训练集和验证集。结果表明,肿瘤部位(T)、淋巴结转移(N)和(分级)G 是预测 DM 的重要危险因素。ROC 分析表明,该模型在训练集和验证集均具有良好的区分能力。DCA 曲线表明,在训练集和验证集中,该列线图的净获益在 DM 风险范围内均较大。生存分析表明,在本研究中,低风险评分的转移病例在训练集和验证集中均显示出较差的预后。

结论

该列线图模型对预测≥50 岁 TC 患者 DM 具有良好的预测性能和净获益。该模型有助于医生为患者制定治疗计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验