Wei Zhuojun, Wang Qinglin, Qu Meiyue, Zhang Hui
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):18734-18744. doi: 10.1021/acsami.3c17839. Epub 2024 Apr 3.
The investigation of high-performance supercapacitors is essential for accelerating the development of energy storage devices. In this work, a 3D hierarchical nanosheet array-like nickel cobaltite/reduced graphene oxide/nickel foam composite (NiCoO/rGO/NF) was assembled via an aqueous coprecipitation-hydrothermal strategy assisted by citric acid. Benefiting from a NiCo layered-double-hydroxide precursor with an atomic-level lattice confinement effect of metal ions and effective hybridization with rGO, the NiCoO/rGO/NF composite is featured as thin NiCoO nanosheets (∼113.6 nm × 11.2 nm) composed of NiCoO nanoparticles (∼10.9 nm) vertically staggered on the surface of a rGO-modified NF skeleton, leading to high surface area, abundant mesoporous structure, and active site exposure. The as-obtained NiCoO/rGO/NF was directly used as a binder-free integrated electrode for supercapacitors, achieving an excellent specific capacitance of 2863.4 F g (1503.3 C g) at 1 A g, a superior rate performance of 2335.2 F g at 20 A g, and a stability retention of 91.7% after 5000 cycles. More impressively, a solid-state asymmetric supercapacitor assembled by the present NiCoO/rGO/NF integrated electrode as the positive electrode and commercial activated carbon as the negative electrode achieved a high energy density of 69.2 Wh kg at a power density of 800 W kg, and the energy density at a peak power density of 20004 W kg still remained at 48.9 Wh kg, also showing a good cycling stability of 87.2% retention over 10000 cycles. The present facile synthesis strategy of the as-obtained NiCoO/rGO/NF nanosheet array composite can be used for the design and construction of many other transition-metal oxide/graphene/NF composite materials with excellent structural stability and performance in energy storage and other related areas.
高性能超级电容器的研究对于加速储能设备的发展至关重要。在这项工作中,通过柠檬酸辅助的水相共沉淀-水热策略组装了一种三维分层纳米片状钴酸镍/还原氧化石墨烯/泡沫镍复合材料(NiCoO/rGO/NF)。受益于具有金属离子原子级晶格限制效应的NiCo层状双氢氧化物前驱体以及与rGO的有效杂化,NiCoO/rGO/NF复合材料的特征是由NiCoO纳米颗粒(约10.9 nm)组成的薄NiCoO纳米片(约113.6 nm×11.2 nm)垂直交错排列在rGO修饰的NF骨架表面,从而导致高表面积、丰富的中孔结构和活性位点暴露。所制备的NiCoO/rGO/NF直接用作超级电容器的无粘结剂集成电极,在1 A g下实现了2863.4 F g(1503.3 C g)的优异比电容,在20 A g下具有2335.2 F g的优异倍率性能,并且在5000次循环后稳定性保持率为91.7%。更令人印象深刻的是,由本研究的NiCoO/rGO/NF集成电极作为正极和商业活性炭作为负极组装的固态不对称超级电容器在功率密度为800 W kg时实现了69.2 Wh kg的高能量密度,并且在峰值功率密度为20004 W kg时的能量密度仍保持在48.9 Wh kg,在10000次循环中也显示出87.2%保持率的良好循环稳定性。所制备的NiCoO/rGO/NF纳米片阵列复合材料的这种简便合成策略可用于设计和构建许多其他具有优异结构稳定性和储能及其他相关领域性能的过渡金属氧化物/石墨烯/NF复合材料。