Suppr超能文献

通过放射成像进行身体成分分析——方法、应用及前景

Body composition analysis by radiological imaging - methods, applications, and prospects.

作者信息

Linder Nicolas, Denecke Timm, Busse Harald

机构信息

Department of Diagnostic and Interventional Radiology, University of Leipzig Medical Center, Leipzig, Germany.

Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, Sankt Gallen, Switzerland.

出版信息

Rofo. 2024 Oct;196(10):1046-1054. doi: 10.1055/a-2263-1501. Epub 2024 Apr 3.

Abstract

BACKGROUND

This review discusses the quantitative assessment of tissue composition in the human body (body composition, BC) using radiological methods. Such analyses are gaining importance, in particular, for oncological and metabolic problems. The aim is to present the different methods and definitions in this field to a radiological readership in order to facilitate application and dissemination of BC methods. The main focus is on radiological cross-sectional imaging.

METHODS

The review is based on a recent literature search in the US National Library of Medicine catalog (pubmed.gov) using appropriate search terms (body composition, obesity, sarcopenia, osteopenia in conjunction with imaging and radiology, respectively), as well as our own work and experience, particularly with MRI- and CT-based analyses of abdominal fat compartments and muscle groups.

RESULTS AND CONCLUSION

Key post-processing methods such as segmentation of tomographic datasets are now well established and used in numerous clinical disciplines, including bariatric surgery. Validated reference values are required for a reliable assessment of radiological measures, such as fatty liver or muscle. Artificial intelligence approaches (deep learning) already enable the automated segmentation of different tissues and compartments so that the extensive datasets can be processed in a time-efficient manner - in the case of so-called opportunistic screening, even retrospectively from diagnostic examinations. The availability of analysis tools and suitable datasets for AI training is considered a limitation.

KEY POINTS

· Radiological imaging methods are increasingly used to determine body composition (BC).. · BC parameters are usually quantitative and well reproducible.. · CT image data from routine clinical examinations can be used retrospectively for BC analysis.. · Prospectively, MRI examinations can be used to determine organ-specific BC parameters.. · Automated and in-depth analysis methods (deep learning or radiomics) appear to become important in the future..

CITATION FORMAT

· Linder N, Denecke T, Busse H. Body composition analysis by radiological imaging - methods, applications, and prospects. Fortschr Röntgenstr 2024; 196: 1046 - 1054.

摘要

背景

本综述讨论了使用放射学方法对人体组织成分(身体成分,BC)进行定量评估。此类分析正变得越来越重要,尤其是在肿瘤学和代谢问题方面。目的是向放射学读者介绍该领域的不同方法和定义,以促进身体成分分析方法的应用和传播。主要重点是放射学横断面成像。

方法

本综述基于最近在美国国立医学图书馆目录(pubmed.gov)中使用适当搜索词(分别为身体成分、肥胖、肌肉减少症、骨质减少症与成像和放射学相关)进行的文献检索,以及我们自己的工作和经验,特别是基于磁共振成像(MRI)和计算机断层扫描(CT)对腹部脂肪隔室和肌肉群的分析。

结果与结论

诸如断层数据集分割等关键后处理方法现已得到充分确立,并在包括减肥手术在内的众多临床学科中得到应用。可靠评估放射学指标(如脂肪肝或肌肉)需要经过验证的参考值。人工智能方法(深度学习)已经能够对不同组织和隔室进行自动分割,从而可以高效地处理大量数据集——在所谓的机会性筛查中,甚至可以从诊断检查中进行回顾性处理。分析工具和适合人工智能训练的数据集的可用性被认为是一个限制因素。

关键点

· 放射学成像方法越来越多地用于确定身体成分(BC)。· BC参数通常是定量的且可重复性良好。· 常规临床检查的CT图像数据可用于回顾性BC分析。· 前瞻性地,MRI检查可用于确定器官特异性BC参数。· 自动化和深入分析方法(深度学习或放射组学)在未来似乎将变得重要。

引用格式

· 林德N,德内克T,布斯H。通过放射学成像进行身体成分分析——方法、应用和前景。《德国放射学杂志》2024年;196:1046 - 1054。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验