Suppr超能文献

声场作用下具有界面能的包裹微泡的非球形振荡

Nonspherical oscillations of an encapsulated microbubble with interface energy under the acoustic field.

作者信息

Dash Nehal, Tamadapu Ganesh

机构信息

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

出版信息

J Acoust Soc Am. 2024 Apr 1;155(4):2445-2459. doi: 10.1121/10.0025390.

Abstract

Spherical instability in acoustically driven encapsulated microbubbles (EBs) suspended in a fluid can trigger nonspherical oscillations within them. We apply the interface energy model [N. Dash and G. Tamadapu, J. Fluid Mech. 932, A26 (2022b)] to investigate nonspherical oscillations of smaller radius microbubbles encapsulated with a viscoelastic shell membrane under acoustic field. Using the Lagrangian energy formulation, coupled governing equations for spherical and nonspherical modes are derived, incorporating interface energy effects, shell elasticity, and viscosity. Numerical simulations of governing equations revealed that the parametrically forced even mode excites even modes, while the odd modes excite both even and odd modes. The model demonstrates that finite amplitude nonspherical oscillations are identifiable in smaller radius EBs only when the interface parameters are introduced into the model; otherwise, they are not. Realizing that nonlinear mode coupling is responsible for saturation of instability resulting in stable nonspherical oscillations, we perform a steady-state and stability analysis using the slow-time equations obtained from Krylov-Bogoliubov perturbation method. Analytical expressions for modal amplitudes and stability thresholds are derived in terms of interface and material parameters. The stability curves are invaluable in determining the precise range of excitation pressure and frequency values required for the EB to exhibit finite amplitude nonspherical oscillations.

摘要

悬浮在流体中的声学驱动包封微泡(EBs)中的球形不稳定性会引发其内部的非球形振荡。我们应用界面能量模型[N. 达什和G. 塔马达普,《流体力学杂志》932,A26(2022b)]来研究在声场作用下由粘弹性壳膜包封的较小半径微泡的非球形振荡。利用拉格朗日能量公式,推导了包含界面能量效应、壳弹性和粘性的球形和非球形模式的耦合控制方程。控制方程的数值模拟表明,参数激励的偶模激发偶模,而奇模激发偶模和奇模。该模型表明,只有当界面参数被引入模型时,才能在较小半径的EBs中识别出有限振幅的非球形振荡;否则,无法识别。认识到非线性模式耦合是导致不稳定性饱和从而产生稳定非球形振荡的原因,我们使用从克里洛夫 - 博戈留波夫摄动法得到的慢时间方程进行了稳态和稳定性分析。根据界面和材料参数推导了模态振幅和稳定性阈值的解析表达式。稳定性曲线对于确定EB表现出有限振幅非球形振荡所需的精确激励压力和频率值范围非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验