Suppr超能文献

二氮嗪介导的胶原光交联改善生物材料的机械性能和细胞相互作用。

The diazirine-mediated photo-crosslinking of collagen improves biomaterial mechanical properties and cellular interactions.

机构信息

Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom.

出版信息

Acta Biomater. 2024 May;180:230-243. doi: 10.1016/j.actbio.2024.03.033. Epub 2024 Apr 2.

Abstract

In tissue engineering, crosslinking with carbodiimides such as EDC is omnipresent to improve the mechanical properties of biomaterials. However, in collagen biomaterials, EDC reacts with glutamate or aspartate residues, inactivating the binding sites for cellular receptors and rendering collagen inert to many cell types. In this work, we have developed a crosslinking method that ameliorates the rigidity, stability, and degradation rate of collagen biomaterials, whilst retaining key interactions between cells and the native collagen sequence. Our approach relies on the UV-triggered reaction of diazirine groups grafted on lysines, leaving critical amino acid residues intact. Notably, GxxGER recognition motifs for collagen-binding integrins, ablated by EDC crosslinking, were left unreacted, enabling cell attachment, spreading, and colonization on films and porous scaffolds. In addition, our procedure conserves the architecture of biomaterials, improves their resistance to collagenase and cellular contraction, and yields material stiffness akin to that obtained with EDC. Importantly, diazirine-crosslinked collagen can host mesenchymal stem cells, highlighting its strong potential as a substrate for tissue repair. We have therefore established a new crosslinking strategy to modulate the mechanical features of collagen porous scaffolds without altering its biological properties, thereby offering an advantageous alternative to carbodiimide treatment. STATEMENT OF SIGNIFICANCE: This article describes an approach to improve the mechanical properties of collagen porous scaffolds, without impacting collagen's natural interactions with cells. This is significant because collagen crosslinking is overwhelmingly performed using carbodiimides, which results in a critical loss of cellular affinity. By contrast, our method leaves key cellular binding sites in the collagen sequence intact, enabling cell-biomaterial interactions. It relies on the fast, UV-triggered reaction of diazirine with collagen, and does not produce toxic by-products. It also supports the culture of mesenchymal stem cells, a pivotal cell type in a wide range of tissue repair applications. Overall, our approach offers an attractive option for the crosslinking of collagen, a prominent material in the growing field of tissue engineering.

摘要

在组织工程中,使用碳化二亚胺(如 EDC)交联是普遍存在的,以提高生物材料的机械性能。然而,在胶原蛋白生物材料中,EDC 会与谷氨酸或天冬氨酸残基反应,使细胞受体的结合位点失活,使胶原蛋白对许多细胞类型失去活性。在这项工作中,我们开发了一种交联方法,改善了胶原蛋白生物材料的刚性、稳定性和降解率,同时保留了细胞与天然胶原蛋白序列之间的关键相互作用。我们的方法依赖于接枝到赖氨酸上的叠氮基团的 UV 触发反应,使关键氨基酸残基保持完整。值得注意的是,用于胶原结合整合素的 GxxGER 识别基序被 EDC 交联所破坏,但未发生反应,使细胞能够附着、展开和在薄膜和多孔支架上定植。此外,我们的程序保留了生物材料的结构,提高了它们对胶原酶和细胞收缩的抵抗力,并产生了类似于 EDC 获得的材料刚度。重要的是,叠氮交联的胶原蛋白可以容纳间充质干细胞,突出了其作为组织修复底物的强大潜力。因此,我们建立了一种新的交联策略来调节胶原蛋白多孔支架的机械性能,而不改变其生物特性,从而为使用碳化二亚胺处理提供了一种有利的替代方案。

意义

本文描述了一种改善胶原蛋白多孔支架机械性能的方法,而不影响胶原蛋白与细胞的天然相互作用。这是重要的,因为胶原蛋白交联压倒性地使用碳化二亚胺,这导致关键的细胞亲和力丧失。相比之下,我们的方法使胶原蛋白序列中的关键细胞结合位点保持完整,使细胞-生物材料相互作用成为可能。它依赖于叠氮与胶原蛋白的快速、UV 触发反应,并且不会产生有毒的副产物。它还支持间充质干细胞的培养,间充质干细胞是广泛的组织修复应用中关键的细胞类型。总体而言,我们的方法为交联胶原蛋白提供了一个有吸引力的选择,胶原蛋白是组织工程领域不断发展的重要材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验