Suppr超能文献

通过光声成像和深度学习技术推进微塑料监测。

Advancing microplastic surveillance through photoacoustic imaging and deep learning techniques.

作者信息

Huang Mengyuan, Han Kaitai, Liu Wu, Wang Zijun, Liu Xi, Guo Qianjin

机构信息

Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.

Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China; School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing 102617, China.

出版信息

J Hazard Mater. 2024 May 15;470:134188. doi: 10.1016/j.jhazmat.2024.134188. Epub 2024 Apr 2.

Abstract

Microplastic contamination presents a significant global environmental threat, yet scientific understanding of its morphological distribution within ecosystems remains limited. This study introduces a pioneering method for comprehensive microplastic assessment and environmental monitoring, integrating photoacoustic imaging and advanced deep learning techniques. Rigorous curation of diverse microplastic datasets enhances model training, yielding a high-resolution imaging dataset focused on shape-based discrimination. The introduction of the Vector-Quantized Variational Auto Encoder (VQVAE2) deep learning model signifies a substantial advancement, demonstrating exceptional proficiency in image dimensionality reduction and clustering. Furthermore, the utilization of Vector Quantization Microplastic Photoacoustic imaging (VQMPA) with a proxy task before decoding enhances feature extraction, enabling simultaneous microplastic analysis and discrimination. Despite inherent limitations, this study lays a robust foundation for future research, suggesting avenues for enhancing microplastic identification precision through expanded sample sizes and complementary methodologies like spectroscopy. In conclusion, this innovative approach not only advances microplastic monitoring but also provides valuable insights for future environmental investigations, highlighting the potential of photoacoustic imaging and deep learning in bolstering sustainable environmental monitoring efforts.

摘要

微塑料污染是全球重大的环境威胁,然而对其在生态系统中的形态分布的科学认识仍然有限。本研究引入了一种开创性的方法,用于全面的微塑料评估和环境监测,该方法整合了光声成像和先进的深度学习技术。对各种微塑料数据集进行严格筛选可增强模型训练,从而生成一个专注于基于形状识别的高分辨率成像数据集。向量量化变分自编码器(VQVAE2)深度学习模型的引入标志着一项重大进展,它在图像降维和聚类方面表现出卓越的能力。此外,在解码前利用带有代理任务的向量量化微塑料光声成像(VQMPA)可增强特征提取,实现微塑料的同时分析和识别。尽管存在固有局限性,但本研究为未来研究奠定了坚实基础,提出了通过扩大样本量和采用光谱学等补充方法来提高微塑料识别精度的途径。总之,这种创新方法不仅推动了微塑料监测的发展,还为未来的环境调查提供了有价值的见解,凸显了光声成像和深度学习在加强可持续环境监测工作方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验