Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
Biochim Biophys Acta Mol Cell Res. 2024 Jun;1871(5):119721. doi: 10.1016/j.bbamcr.2024.119721. Epub 2024 Apr 3.
Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1 MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1 MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells.
代谢重编程被认为是癌症的一个标志,并被临床用于治疗的新靶点。E2F 转录因子-1(E2F1)调节各种细胞过程,包括增殖和代谢途径,并根据细胞和分子背景,作为癌基因或肿瘤抑制因子发挥作用。后者是显而易见的,因为观察到 E2f1 敲除小鼠会自发形成肿瘤,包括子宫肉瘤。这种双重作用需要详细研究 E2F1 缺失如何影响与癌症进展相关的代谢途径。我们的数据表明,E2F1 结合到几个谷氨酰胺代谢相关基因的启动子上。有趣的是,在缺乏 E2F1 的小鼠胚胎成纤维细胞(MEFs)中,谷氨酰胺代谢途径中的基因表达增加。此外,我们证实 E2f1 MEFs 更有效地代谢谷氨酰胺,并产生用于增殖的谷氨酰胺衍生前体。从机制上讲,我们观察到 E2F1 和 MYC 在谷氨酰胺代谢启动子上的共占据,E2F1 耗尽后 MYC 结合增加,并且沉默 MYC 降低了 E2f1 MEFs 中谷氨酰胺相关基因的表达。在 29 种不同的人类癌症的转录组分析中,鉴定出子宫肉瘤,其 E2F1 和谷氨酰胺代谢基因之间呈负相关。CRISPR/Cas9 敲除子宫肉瘤细胞系 SK-UT-1 中的 E2F1 证实了谷氨酰胺代谢基因表达的升高、增殖的增加以及 E2F1 缺失时 MYC 与谷氨酰胺相关启动子的结合增加。总之,我们的数据表明 E2F1 在子宫肉瘤细胞的能量代谢和代谢适应中起着至关重要的作用。
Biochim Biophys Acta Mol Cell Res. 2024-6
Oncogene. 2013-1-28
Nat Cell Biol. 2011-8-14
Mol Cancer Res. 2012-7-13
Biochem Biophys Res Commun. 2014-6-2
Signal Transduct Target Ther. 2025-8-4
NPJ Syst Biol Appl. 2025-3-13
Biomark Res. 2024-10-29