Suppr超能文献

锰暴露矿工的嗅束/嗅球金属浓度

Olfactory tract/bulb metal concentration in Manganese-exposed mineworkers.

作者信息

Gonzalez-Cuyar Luis F, Nelson Gill, Nielsen Susan Searles, Dlamini Wendy W, Keyser-Gibson Amelia, Keene C Dirk, Paulsen Michael, Criswell Susan R, Senini Natalie, Sheppard Lianne, Samy Shar, Simpson Christopher D, Baker Marissa G, Racette Brad A

机构信息

University of Washington, School of Medicine and Department of Laboratory Medicine and Pathology, Division of Neuropathology, 325 9th Ave, Seattle, WA 98104, USA.

School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Rd, Parktown 2193, South Africa; Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA.

出版信息

Neurotoxicology. 2024 May;102:96-105. doi: 10.1016/j.neuro.2024.04.001. Epub 2024 Apr 4.

Abstract

BACKGROUND

Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system.

OBJECTIVE

To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers.

METHODS

Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration.

RESULTS

The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration.

CONCLUSIONS

Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.

摘要

背景

锰(Mn)是一种必需的微量元素,也是一种公认的神经毒素。职业和环境暴露可能会绕过体内稳态调节,导致全身锰水平升高。超细环境空气颗粒物通过鼻神经元途径转运至嗅球和嗅束,可能是锰进入中枢神经系统的重要途径。

目的

测量锰暴露和未暴露的矿工嗅束/嗅球组织中的金属浓度。

方法

我们使用电感耦合等离子体质谱法(ICP-MS)测量并比较了24名锰暴露和17名未暴露的南非矿工单侧嗅束/嗅球中的组织金属浓度。我们使用线性回归研究累积锰暴露与嗅束/嗅球锰浓度之间的关联。

结果

锰暴露矿工与未暴露矿工的嗅束/嗅球平均锰浓度差异为0.16µg/g(95%置信区间-0.11,0.42);但在排除一个有影响的观察值后,差异降至0.09µg/g(95%置信区间0.004,0.18)。嗅束/嗅球金属浓度与累积锰暴露表明可能存在正相关;总体而言,每毫克锰/每年,嗅束/嗅球锰浓度高出0.05µg/g(95%置信区间0.01,0.08),但排除三个有影响的观察值后为-0.003(95%置信区间-0.02,0.02)。近期锰暴露与嗅束/嗅球锰浓度无关。

结论

我们的研究结果表明,锰暴露的矿工嗅束/嗅球组织中的锰浓度可能高于未暴露的矿工,且浓度可能更多地取决于累积剂量而非暴露时间。

相似文献

1
Olfactory tract/bulb metal concentration in Manganese-exposed mineworkers.
Neurotoxicology. 2024 May;102:96-105. doi: 10.1016/j.neuro.2024.04.001. Epub 2024 Apr 4.
2
Translocation of inhaled ultrafine manganese oxide particles to the central nervous system.
Environ Health Perspect. 2006 Aug;114(8):1172-8. doi: 10.1289/ehp.9030.
3
Translocation of inhaled ultrafine particles to the brain.
Inhal Toxicol. 2004 Jun;16(6-7):437-45. doi: 10.1080/08958370490439597.
8
Nervous system effects of occupational manganese exposure on South African manganese mineworkers.
Neurotoxicology. 2003 Aug;24(4-5):649-56. doi: 10.1016/S0161-813X(03)00035-4.
9
Intranasal exposure to manganese disrupts neurotransmitter release from glutamatergic synapses in the central nervous system in vivo.
Neurotoxicology. 2012 Oct;33(5):996-1004. doi: 10.1016/j.neuro.2012.04.014. Epub 2012 Apr 20.
10
Olfactory transport: a direct route of delivery of inhaled manganese phosphate to the rat brain.
J Toxicol Environ Health A. 2002 Oct 25;65(20):1493-511. doi: 10.1080/00984100290071630.

引用本文的文献

1
Manganese-Induced Parkinsonism: A Review of Etiologies and Treatments.
Degener Neurol Neuromuscul Dis. 2025 Jun 6;15:65-79. doi: 10.2147/DNND.S482018. eCollection 2025.

本文引用的文献

1
Environmental manganese exposure and cognitive control in a South African population.
Neurotoxicology. 2022 Mar;89:31-40. doi: 10.1016/j.neuro.2022.01.004. Epub 2022 Jan 6.
2
3
Severity of parkinsonism associated with environmental manganese exposure.
Environ Health. 2021 Mar 15;20(1):27. doi: 10.1186/s12940-021-00712-3.
4
Effect of formalin fixation on measured concentrations of deposited gadolinium in human tissue: an autopsy study.
Acta Radiol. 2022 Mar;63(3):345-350. doi: 10.1177/0284185121994047. Epub 2021 Feb 15.
5
Variability in hair gadolinium concentrations among decedents who received gadolinium-based contrast agents.
Anal Bioanal Chem. 2021 Mar;413(6):1571-1582. doi: 10.1007/s00216-020-03116-3. Epub 2021 Jan 27.
7
The health effects of ultrafine particles.
Exp Mol Med. 2020 Mar;52(3):311-317. doi: 10.1038/s12276-020-0403-3. Epub 2020 Mar 17.
8
Manganese exposure, parkinsonian signs, and quality of life in South African mine workers.
Am J Ind Med. 2020 Jan;63(1):36-43. doi: 10.1002/ajim.23060. Epub 2019 Oct 24.
9
A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese.
Sci Rep. 2018 Jan 9;8(1):211. doi: 10.1038/s41598-017-18584-4.
10
Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease.
Sci Rep. 2017 Sep 5;7(1):10454. doi: 10.1038/s41598-017-10659-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验