Suppr超能文献

预后营养指数与淋巴细胞单核细胞比值联合预测肌层浸润性膀胱癌患者预后的价值

The Prognostic Value of the Combination of the Prognostic Nutritional Index and the Lymphocyte:Monocyte Ratio for the Prediction of Patients with Muscle-Invasive Bladder Cancer.

机构信息

Department of Urology, Liuzhou Traditional Chinese Medical Hospital, 545000 Liuzhou, Guangxi, China.

Department of Surgery, Hechi Maternal and Child Health Hospital, 547001 Hechi, Guangxi, China.

出版信息

Arch Esp Urol. 2024 Mar;77(2):164-172. doi: 10.56434/j.arch.esp.urol.20247702.22.

Abstract

OBJECTIVE

To explore the efficacy of combining the prognostic nutritional index (PNI) and the lymphocyte:monocyte ratio (LMR) for patients with muscle-invasive bladder cancer (MIBC).

METHODS

Of 172 patients who were diagnosed with MIBC in our hospital, 94 were eligible for the study. The clinical data of the 94 patients with MIBC were collected. The patients were divided according to the optimal cut-off values for the preoperative PNI and LMR into a low-PNI subgroup (PNI <44.15, 52 patients), a high-PNI subgroup (PNI ≥44.15, 42 patients), a low-LMR subgroup (LMR <2.98, 50 patients) and a high-LMR subgroup (LMR ≥2.98, 44 patients). The area under the receiver operating characteristic (ROC) curve (AUC) was used to analyse the efficacy of the PNI and the LMR in predicting the prognosis of patients with MIBC. Univariate and multivariate logistic regression analyses were performed to evaluate prognostic factors for patients with MIBC. Kaplan-Meier (K‒M) survival analysis was used for overall survival (OS) analysis to explore the ability of the PNI combined with the LMR to predict the prognosis of patients with MIBC.

RESULTS

The optimal cut-off values for the preoperative PNI and the preoperative LMR were 44.15 and 2.98, respectively, on the basis of ROC curves. ROC curve analysis revealed that the PNI (AUC = 0.720, sensitivity 65.9%, specificity 74.50%, Youden index 0.399) and the LMR (AUC = 0.724, sensitivity 65.9%, specificity 70.0%, Youden index 0.395) both had good prognostic efficacy for patients with MIBC. The results of univariate and multivariate logistic regression analyses showed that preoperative PNI <44.15 was an independent risk factor for OS in patients with MIBC ( = 0.027). Based on K‒M survival curve analysis, patients with PNI <44.15 and LMR <2.98 had the shortest OS ( = 0.00002).

CONCLUSIONS

Low preoperative PNI and LMR values are indicative of poor prognosis in patients with MIBC. The efficacy of their combination was better than that of the factors independently.

摘要

目的

探讨联合预后营养指数(PNI)和淋巴细胞与单核细胞比值(LMR)评估肌层浸润性膀胱癌(MIBC)患者预后的效果。

方法

回顾性分析我院收治的 172 例 MIBC 患者的临床资料,根据术前 PNI 和 LMR 的最佳截断值将 94 例 MIBC 患者分为低 PNI 组(PNI<44.15,52 例)、高 PNI 组(PNI≥44.15,42 例)、低 LMR 组(LMR<2.98,50 例)和高 LMR 组(LMR≥2.98,44 例)。采用受试者工作特征(ROC)曲线下面积(AUC)分析 PNI 和 LMR 对 MIBC 患者预后的预测效果。采用单因素和多因素 logistic 回归分析评估 MIBC 患者的预后因素。采用 Kaplan-Meier(K-M)生存分析进行总生存(OS)分析,探讨 PNI 联合 LMR 预测 MIBC 患者预后的能力。

结果

基于 ROC 曲线,术前 PNI 和 LMR 的最佳截断值分别为 44.15 和 2.98。ROC 曲线分析显示,PNI(AUC=0.720,敏感度 65.9%,特异度 74.50%,约登指数 0.399)和 LMR(AUC=0.724,敏感度 65.9%,特异度 70.0%,约登指数 0.395)对 MIBC 患者的预后均有较好的预测效果。单因素和多因素 logistic 回归分析结果显示,术前 PNI<44.15 是 MIBC 患者 OS 的独立危险因素( =0.027)。基于 K-M 生存曲线分析,PNI<44.15 和 LMR<2.98 的患者 OS 最短( =0.00002)。

结论

术前 PNI 和 LMR 值较低提示 MIBC 患者预后不良,两者联合的效果优于单独评估。

相似文献

4
[Preoperative Lymphocyte-to-monocyte Ratio Predicts Prognosis in Patients with Stage T1 Non-muscle Invasive Bladder Cancer].
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2019 Oct 30;41(5):622-629. doi: 10.3881/j.issn.1000-503X.11227.
8
Diagnostic value of preoperative inflammatory markers in patients with glioma: a multicenter cohort study.
J Neurosurg. 2018 Sep;129(3):583-592. doi: 10.3171/2017.3.JNS161648. Epub 2017 Nov 3.

引用本文的文献

1
Prognostic Nutritional Index as a Predictor of Complications Following Robot-Assisted Radical Cystectomy.
Cureus. 2025 May 20;17(5):e84470. doi: 10.7759/cureus.84470. eCollection 2025 May.
2
Prognostic role of prognostic nutritional index in patients with bladder cancer: a systematic review and meta-analysis.
Front Oncol. 2025 Jan 23;14:1486389. doi: 10.3389/fonc.2024.1486389. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验