Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, 20018, Gipuzkoa, Spain.
J Mater Chem B. 2024 Apr 24;12(16):4029-4038. doi: 10.1039/d3tb02592f.
Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.
时空控制药物输送最大限度地减少了副作用,并使需要特定剂量模式的治疗成为可能。共轭聚合物(CP)可用于电控制药物输送;然而,到目前为止,大多数演示仅限于 500 Da 以下的分子。较大的分子只能在 CP 聚合过程中被掺入,因此只能进行单次输送。这项工作利用了经过糖基化的聚噻吩 p(g3T2) 在控制药物输送方面的创纪录的体积变化。p(g3T2) 在电化学掺杂过程中经历高达 300%的可逆体积变化,形成纳米级范围的孔,从而形成导电水凝胶。p(g3T2) 涂层的 3D 碳海绵能够控制加载和释放分子量在 800-6000 Da 之间的分子,从简单的染料到激素胰岛素。分子的加载方式是通过与带电荷的聚合物主链的静电相互作用和在多孔基质中的物理捕获来实现的。较小的分子从聚合物中泄漏出来,而较大的分子则无法有效加载。最后,这项工作展示了具有 1300 Da 分子量的分子的时间模式释放,以及多次加载和释放循环,而不会影响开/关比。