Wu Xin Yu, Feng Hong Yuan, Wan Fengshuo, Wei Meng, Guo Chong, Cai Longzhu, Wu Fan, Jiang Zhi Hao, Kang Lei, Hong Wei, Werner Douglas H
State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China.
Central Research Institute, BOE Technology Group Company Ltd., Beijing, 100176, China.
Adv Mater. 2024 Jun;36(26):e2402170. doi: 10.1002/adma.202402170. Epub 2024 Apr 15.
The rapid advancement of prevailing communication/sensing technologies necessitates cost-effective millimeter-wave arrays equipped with a massive number of phase-shifting cells to perform complicated beamforming tasks. Conventional approaches employing semiconductor switch/varactor components or tunable materials encounter obstacles such as quantization loss, high cost, high complexity, and limited adaptability for realizing large-scale arrays. Here, a low-cost, ultrathin, fast-response, and large-scale solution relying on metasurface concepts combined together with liquid crystal (LC) materials requiring a layer thickness of only 5 µm is reported. Rather than immersing resonant structures in LCs, a joint material-circuit-based strategy is devised, via integrating deep-subwavelength-thick LCs into slow-wave structures, to achieve constitutive metacells with continuous phase shifting and stable reflectivity. An LC-facilitated reconfigurable metasurface sub-system containing more than 2300 metacells is realized with its unprecedented comprehensive wavefront manipulation capacity validated through various beamforming functions, including beam focusing/steering, reconfigurable vortex beams, and tunable holograms, demonstrating a milli-second-level function-switching speed. The proposed methodology offers a paradigm shift for modulating electromagnetic waves in a non-resonating broadband fashion with fast-response and low-cost properties by exploiting functionalized LC-enabled metasurfaces. Moreover, this extremely agile metasurface-enabled antenna technology will facilitate a transformative impact on communication/sensing systems and empower new possibilities for wavefront engineering and diffractive wave calculation/inference.
当前通信/传感技术的快速发展,使得配备大量移相单元的低成本毫米波阵列成为执行复杂波束形成任务的必要条件。采用半导体开关/变容二极管组件或可调谐材料的传统方法在实现大规模阵列时遇到诸如量化损耗、高成本、高复杂性和有限适应性等障碍。在此,报道了一种基于超表面概念与液晶(LC)材料相结合的低成本、超薄、快速响应且大规模的解决方案,该方案所需的层厚度仅为5微米。不是将谐振结构浸没在液晶中,而是通过将深亚波长厚度的液晶集成到慢波结构中,设计了一种基于材料 - 电路的联合策略,以实现具有连续相移和稳定反射率的本构超元胞。实现了一个包含超过2300个超元胞的液晶辅助可重构超表面子系统,通过各种波束形成功能,包括波束聚焦/转向、可重构涡旋波束和可调谐全息图,验证了其前所未有的综合波前操纵能力,展示了毫秒级的功能切换速度。所提出的方法通过利用功能化的基于液晶的超表面,为以非谐振宽带方式调制电磁波提供了一种范式转变,具有快速响应和低成本的特性。此外,这种极具灵活性的基于超表面的天线技术将对通信/传感系统产生变革性影响,并为波前工程和衍射波计算/推理带来新的可能性。