Suppr超能文献

脱水诱导的植物叶片波纹折叠。

Dehydration-induced corrugated folding in plant leaves.

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320259121. doi: 10.1073/pnas.2320259121. Epub 2024 Apr 8.

Abstract

Plant leaves, whose remarkable ability for morphogenesis results in a wide range of petal and leaf shapes in response to environmental cues, have inspired scientific studies as well as the development of engineering structures and devices. Although some typical shape changes in plants and the driving force for such shape evolution have been extensively studied, there remain many poorly understood mechanisms, characteristics, and principles associated with the vast array of shape formation of plant leaves in nature. Here, we present a comprehensive study that combines experiment, theory, and numerical simulations of one such topic-the mechanics and mechanisms of corrugated leaf folding induced by differential shrinking in . Through systematic measurements of the dehydration process in sectioned leaves, we identify a linear correlation between change in the leaf-folding angle and water loss. Building on experimental findings, we develop a generalized model that provides a scaling relationship for water loss in sectioned leaves. Furthermore, our study reveals that corrugated folding induced by dehydration in leaves is achieved by the deformation of a structural architecture-the "hinge" cells. Utilizing such connections among structure, morphology, environmental stimuli, and mechanics, we fabricate several biomimetic machines, including a humidity sensor and morphing devices capable of folding in response to dehydration. The mechanisms of corrugated folding in identified in this work provide a general understanding of the interactions between plant leaves and water. The actuation mechanisms identified in this study also provide insights into the rational design of soft machines.

摘要

植物叶片具有显著的形态发生能力,能够根据环境线索形成各种不同的花瓣和叶片形状,这启发了科学研究,并促进了工程结构和设备的发展。尽管已经广泛研究了植物的一些典型形状变化及其形状进化的驱动力,但仍有许多与植物叶片在自然界中形成的大量形状相关的机制、特征和原理尚未被充分理解。在这里,我们进行了一项综合研究,结合实验、理论和数值模拟,研究了一个主题,即由差异收缩引起的波纹状叶片折叠的力学和机制。通过对切片叶片脱水过程的系统测量,我们确定了叶片折叠角度的变化与水分损失之间存在线性相关性。基于实验结果,我们开发了一个广义模型,为切片叶片的水分损失提供了一个标度关系。此外,我们的研究还揭示了由脱水引起的波纹状折叠是通过一种结构架构——“铰链”细胞的变形来实现的。利用结构、形态、环境刺激和力学之间的这种联系,我们制造了几个仿生机器,包括湿度传感器和能够响应脱水而折叠的变形装置。本工作中确定的波纹状折叠机制为植物叶片与水之间的相互作用提供了一个普遍的认识。本研究中确定的致动机制也为软机器的合理设计提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45b3/11047117/317e069779bb/pnas.2320259121fig01.jpg

相似文献

1
Dehydration-induced corrugated folding in plant leaves.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320259121. doi: 10.1073/pnas.2320259121. Epub 2024 Apr 8.
2
Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
Acc Chem Res. 2022 Jun 7;55(11):1533-1545. doi: 10.1021/acs.accounts.2c00046. Epub 2022 Apr 12.
3
CIN-like TCP13 is essential for plant growth regulation under dehydration stress.
Plant Mol Biol. 2022 Feb;108(3):257-275. doi: 10.1007/s11103-021-01238-5. Epub 2022 Jan 20.
4
Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.
Plant Physiol. 2011 Jun;156(2):832-43. doi: 10.1104/pp.111.173856. Epub 2011 Apr 21.
5
Differential growth and shape formation in plant organs.
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12359-12364. doi: 10.1073/pnas.1811296115. Epub 2018 Nov 19.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
Leaf patch clamp pressure probe measurements on olive leaves in a nearly turgorless state.
Plant Biol (Stuttg). 2012 Jul;14(4):666-74. doi: 10.1111/j.1438-8677.2011.00545.x. Epub 2012 Jan 30.
10
Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes.
Tree Physiol. 2014 Jun;34(6):619-29. doi: 10.1093/treephys/tpu045. Epub 2014 Jun 26.

引用本文的文献

1
Nonliving dehydrated leaves-inspired surface anti-wrinkling.
Sci Adv. 2025 Jul 4;11(27):eadx7398. doi: 10.1126/sciadv.adx7398.
2
Mechanics of pressurized cellular sheets.
J R Soc Interface. 2025 Feb;22(223):20240653. doi: 10.1098/rsif.2024.0653. Epub 2025 Feb 12.

本文引用的文献

1
Shape memory polymer with programmable recovery onset.
Nature. 2023 Oct;622(7984):748-753. doi: 10.1038/s41586-023-06520-8. Epub 2023 Sep 13.
2
Engineering Themes in Plant Forms and Functions.
Annu Rev Plant Biol. 2023 May 22;74:777-801. doi: 10.1146/annurev-arplant-061422-094751.
3
Insect-scale jumping robots enabled by a dynamic buckling cascade.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2210651120. doi: 10.1073/pnas.2210651120. Epub 2023 Jan 23.
4
Multiscale structural anisotropy steers plant organ actuation.
Curr Biol. 2023 Feb 27;33(4):639-646.e3. doi: 10.1016/j.cub.2022.12.013. Epub 2023 Jan 5.
5
Multiple mechanisms behind plant bending.
Nat Plants. 2023 Jan;9(1):13-21. doi: 10.1038/s41477-022-01310-y. Epub 2022 Dec 29.
6
Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones.
Nat Mater. 2022 Dec;21(12):1357-1365. doi: 10.1038/s41563-022-01391-2. Epub 2022 Nov 10.
7
Leaf morphogenesis: The multifaceted roles of mechanics.
Mol Plant. 2022 Jul 4;15(7):1098-1119. doi: 10.1016/j.molp.2022.05.015. Epub 2022 Jun 2.
8
Dandelion pappus morphing is actuated by radially patterned material swelling.
Nat Commun. 2022 May 6;13(1):2498. doi: 10.1038/s41467-022-30245-3.
9
Building an extensible cell wall.
Plant Physiol. 2022 Jun 27;189(3):1246-1277. doi: 10.1093/plphys/kiac184.
10
Recyclable and Reusable Natural Plant-Based Paper for Repeated Digital Printing and Unprinting.
Adv Mater. 2022 May;34(19):e2109367. doi: 10.1002/adma.202109367. Epub 2022 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验