Suppr超能文献

由旋转矩形组装而成的负泊松比结构的研究。

Studies of Auxetic Structures Assembled from Rotating Rectangles.

作者信息

Plewa Julian, Płońska Małgorzata, Junak Grzegorz

机构信息

Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Str. 1a, 41-500 Chorzów, Poland.

Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland.

出版信息

Materials (Basel). 2024 Feb 3;17(3):731. doi: 10.3390/ma17030731.

Abstract

The subject of the work is analysis, which presents a renowned auxetic structure based on so-called rotating polygons, which has been subject to modification. This modification entails introducing pivot points on unit cell surfaces near rectangle corners. This innovative system reveals previously unexplored correlations between Poisson's ratio, the ratio of rectangle side lengths, pivot point placement, and structural opening. Formulas have been derived using geometric relationships to compute the structure's linear dimensions and Poisson's ratio. The obtained findings suggest that Poisson's ratio is intricately tied to the structure's opening degree, varying as the structure undergoes stretching. Notably, there are critical parameter limits beyond which Poisson's ratio turns positive, leading to the loss of auxetic properties. For elongated rectangles, extremely high negative Poisson's ratio values are obtained, but only for small opening angles, while with further stretching, the structure loses its auxetic properties. This observed trend is consistent across a broad category of structures comprised of rotating rectangles.

摘要

这项工作的主题是分析,它展示了一种基于所谓旋转多边形的著名负泊松比结构,该结构已经过修改。这种修改需要在矩形角附近的晶胞表面引入枢轴点。这个创新系统揭示了泊松比、矩形边长比、枢轴点位置和结构开口之间以前未被探索的相关性。利用几何关系推导出了计算结构线性尺寸和泊松比的公式。所得结果表明,泊松比与结构的开口程度密切相关,随着结构的拉伸而变化。值得注意的是,存在临界参数极限,超过该极限泊松比变为正值,导致负泊松比特性丧失。对于细长矩形,可获得极高的负泊松比值,但仅在小开口角度时,而随着进一步拉伸,结构会失去其负泊松比特性。在由旋转矩形组成的广泛结构类别中,观察到的这一趋势是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d0/10856801/b206db9ef659/materials-17-00731-g015.jpg

相似文献

1
Studies of Auxetic Structures Assembled from Rotating Rectangles.
Materials (Basel). 2024 Feb 3;17(3):731. doi: 10.3390/ma17030731.
3
Experimental Study of Auxetic Structures Made of Re-Entrant ("Bow-Tie") Cells.
Materials (Basel). 2024 Jun 21;17(13):3061. doi: 10.3390/ma17133061.
4
Computational prediction of new auxetic materials.
Nat Commun. 2017 Aug 22;8(1):323. doi: 10.1038/s41467-017-00399-6.
5
Auxetic Behaviour of Rigid Connected Squares.
Materials (Basel). 2023 Jul 28;16(15):5306. doi: 10.3390/ma16155306.
6
Pluripotent stem cell expansion and neural differentiation in 3-D scaffolds of tunable Poisson's ratio.
Acta Biomater. 2017 Feb;49:192-203. doi: 10.1016/j.actbio.2016.11.025. Epub 2016 Nov 11.
7
Numerical Analysis of Dynamic Properties of an Auxetic Structure with Rotating Squares with Holes.
Materials (Basel). 2022 Dec 7;15(24):8712. doi: 10.3390/ma15248712.
8
Sign-tunable Poisson's ratio in semi-fluorinated graphene.
Nanoscale. 2017 Jan 7;9(1):128-133. doi: 10.1039/c6nr04519g. Epub 2016 Oct 10.
9
The negative Poisson's ratio in graphene-based carbon foams.
Phys Chem Chem Phys. 2018 Feb 7;20(6):4597-4605. doi: 10.1039/c7cp06983a.
10
An Experimental Study of Auxetic Tubular Structures.
Materials (Basel). 2022 Jul 29;15(15):5245. doi: 10.3390/ma15155245.

引用本文的文献

1
Dynamics of Polymeric Re-Entrant Auxetic Structures: Cyclic Compression Studies.
Polymers (Basel). 2025 Mar 20;17(6):825. doi: 10.3390/polym17060825.

本文引用的文献

1
Numerical Analysis of Dynamic Properties of an Auxetic Structure with Rotating Squares with Holes.
Materials (Basel). 2022 Dec 7;15(24):8712. doi: 10.3390/ma15248712.
2
Programmable gear-based mechanical metamaterials.
Nat Mater. 2022 Aug;21(8):869-876. doi: 10.1038/s41563-022-01269-3. Epub 2022 Jun 9.
3
Investigation of Modified Auxetic Structures from Rigid Rotating Squares.
Materials (Basel). 2022 Apr 13;15(8):2848. doi: 10.3390/ma15082848.
4
In-Plane Deformation Behavior and the Open Area of Rotating Squares in an Auxetic Compound Fabric.
Polymers (Basel). 2022 Jan 31;14(3):571. doi: 10.3390/polym14030571.
5
Hard-particle rotation enabled soft-hard integrated auxetic mechanical metamaterials.
Proc Math Phys Eng Sci. 2019 Aug;475(2228):20190234. doi: 10.1098/rspa.2019.0234. Epub 2019 Aug 28.
7
Design of Hierarchical Structures for Synchronized Deformations.
Sci Rep. 2017 Jan 24;7:41183. doi: 10.1038/srep41183.
8
Auxetic Perforated Mechanical Metamaterials with Randomly Oriented Cuts.
Adv Mater. 2016 Jan 13;28(2):385-9. doi: 10.1002/adma.201503653. Epub 2015 Nov 17.
9
Engineering the shape and structure of materials by fractal cut.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17390-5. doi: 10.1073/pnas.1417276111. Epub 2014 Nov 24.
10
Auxetic oesophageal stents: structure and mechanical properties.
J Mater Sci Mater Med. 2014 Feb;25(2):527-53. doi: 10.1007/s10856-013-5067-2. Epub 2013 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验