An Dong, Wang Hanqing, Wang Wenguan, Wang Zun, Huang Yan, He Keji, Wang Liang
IEEE Trans Pattern Anal Mach Intell. 2024 Apr 9;PP. doi: 10.1109/TPAMI.2024.3386695.
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at https://github.com/MarSaKi/ETPNav.
视觉语言导航是一项要求智能体根据指令在环境中导航的任务。在具身人工智能领域,它变得越来越重要,在自主导航、搜索救援和人机交互方面具有潜在应用。在本文中,我们提议解决一个更实际但具有挑战性的对应设置——连续环境中的视觉语言导航(VLN-CE)。为了开发一个强大的VLN-CE智能体,我们提出了一个新的导航框架ETPNav,它专注于两项关键技能:1)抽象环境并生成远程导航计划的能力,以及2)在连续环境中避障控制的能力。ETPNav通过沿着遍历路径自组织预测的路点来执行环境的在线拓扑映射,无需先验环境经验。它使智能体能够将导航过程分解为高级规划和低级控制。同时,ETPNav利用基于Transformer的跨模态规划器根据拓扑地图和指令生成导航计划。然后通过一个避障控制器执行该计划,该控制器利用试错启发式方法防止导航陷入障碍物。实验结果证明了所提方法的有效性。ETPNav在R2R-CE和RxR-CE数据集上分别比先前的最先进方法提高了10%以上和20%。我们的代码可在https://github.com/MarSaKi/ETPNav获取。