Huang Honghao, Yue Kaihang, Liu Chaofan, Zhan Ke, Dong Hongliang, Yan Ya
School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China.
Small. 2024 Aug;20(34):e2400441. doi: 10.1002/smll.202400441. Epub 2024 Apr 9.
Electrochemical reduction of carbon dioxide (CORR) to formate is economically beneficial but suffers from poor selectivity and high overpotential. Herein, enriched microcrystalline copper oxide is introduced on the surface of indium-based metal-organic frameworks. Benefiting from the CuO (111) microcrystalline shell and formed catalytic active In-Cu interfaces, the obtained MIL-68(In)/CuO heterostructure display excellent CORR to formate with a Faradaic efficiency (FE) as high as 89.7% at low potential of only -0.7 V vs. RHE in a flow cell. Significantly, the membrane electrode assembly (MEA) cell based on MIL-68(In)/CuO exhibit a remarkable current density of 640.3 mA cm at 3.1 V and can be stably operated for 180 h at 2.7 V with a current density of 200 mA cm. The ex/in situ electrochemical investigations reveal that the introduction of CuO increases the formation rate of the carbon dioxide reduction intermediate HCOO and inhibits the competitive hydrogen evolution reaction. This work not only provides an in-depth study of the mechanism of the CORR pathways on In/Cu composite catalyst but also offers an effective strategy for the interface design of electrocatalytic carbon dioxide reduction reaction.
将二氧化碳电化学还原(CORR)为甲酸盐具有经济效益,但存在选择性差和过电位高的问题。在此,在铟基金属有机框架表面引入了富集的微晶氧化铜。得益于CuO(111)微晶壳层和形成的催化活性In-Cu界面,所制备的MIL-68(In)/CuO异质结构在流动池中对甲酸盐表现出优异的CORR性能,在相对于可逆氢电极(RHE)仅-0.7 V的低电位下,法拉第效率(FE)高达89.7%。值得注意的是,基于MIL-68(In)/CuO的膜电极组件(MEA)电池在3.1 V时表现出640.3 mA cm的显著电流密度,并且在2.7 V、电流密度为200 mA cm的条件下可稳定运行180 h。原位/非原位电化学研究表明,CuO的引入提高了二氧化碳还原中间体HCOO的生成速率,并抑制了竞争性析氢反应。这项工作不仅对In/Cu复合催化剂上CORR途径的机理进行了深入研究,还为电催化二氧化碳还原反应的界面设计提供了一种有效策略。