Applied Pharmaceutical Innovation, Edmonton, AB, T5J 4P6, Canada.
Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
Eur Biophys J. 2024 May;53(4):171-181. doi: 10.1007/s00249-024-01706-y. Epub 2024 Apr 10.
Polymeric micelles are nanocarriers for drug, protein and gene delivery due to their unique core/shell structure, which encapsulates and protects therapeutic cargos with diverse physicochemical properties. However, information regarding the micellar nanoenvironment's fluidity can provide unique insight into their makeup. In this study, we used electron paramagnetic resonance (EPR) spectroscopy to study free radical spin probe (5-doxylstearate methyl ester, 5-MDS, and 16-doxylstearic acid, 16-DS) behaviour in methoxy-poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-PBCL) and methoxy-poly(ethylene oxide)-poly(ε-caprolactone) (PEO-PCL) polymeric micelles. Spin probes provided information about the spectroscopic rotational correlation time (τ, s) and the spectroscopic partition parameter F. We hypothesized that spin probes would partition into the polymeric micelles, and these parameters would be calculated. The results showed that both 5-MDS and 16-DS spectra were modulated in the presence of polymeric micelles. Based on τ values, 5-MDS revealed that PEO-PCL (τ = 3.92 ± 0.26 × 10 s) was more fluid than PEO-PBCL (τ = 7.15 ± 0.63 × 10 s). The F parameter, however, could not be calculated due to the rotational hindrance of the probe within the micelles. With 16-DS, more probe rotation was observed, and although the F parameter could be calculated, it was not helpful to distinguish the micelles' fluidity. Also, doxorubicin-loading interfered with the spin probes, particularly for 16-DS. However, using simulations, we could distinguish the hydrophilic and hydrophobic components of the 16-DS probe. The findings suggest that EPR spectroscopy is a valuable method for determining core fluidity in polymeric micelles.
聚合物胶束由于其独特的核/壳结构,可作为药物、蛋白质和基因传递的纳米载体,将具有各种物理化学性质的治疗有效载荷包裹并保护起来。然而,胶束纳米环境的流动性信息可以为其组成提供独特的见解。在这项研究中,我们使用电子顺磁共振(EPR)光谱法研究了自由基自旋探针(5-二氧代-5-甲基十八烷酸甲酯,5-MDS 和 16-二氧代硬脂酸,16-DS)在甲氧基聚(乙二醇)-聚(α-苄基羧酸-ε-己内酯)(PEO-PBCL)和甲氧基聚(乙二醇)-聚(ε-己内酯)(PEO-PCL)聚合物胶束中的行为。自旋探针提供了关于光谱旋转相关时间(τ,s)和光谱分配参数 F 的信息。我们假设自旋探针将分配到聚合物胶束中,并计算这些参数。结果表明,在聚合物胶束存在的情况下,5-MDS 和 16-DS 光谱均发生了调制。根据 τ 值,5-MDS 表明 PEO-PCL(τ=3.92±0.26×10 - s)比 PEO-PBCL(τ=7.15±0.63×10 - s)更具流动性。然而,由于探针在胶束内的旋转受阻,无法计算 F 参数。对于 16-DS,可以观察到更多的探针旋转,虽然可以计算 F 参数,但对于区分胶束的流动性没有帮助。此外,阿霉素负载会干扰自旋探针,尤其是 16-DS。然而,通过模拟,我们可以区分 16-DS 探针的亲水性和疏水性成分。研究结果表明,EPR 光谱法是一种确定聚合物胶束核心流动性的有价值方法。