Suppr超能文献

快速且强大的内镜内容区域估计:基于精简GPU的流程及精选基准数据集。

Rapid and robust endoscopic content area estimation: A lean GPU-based pipeline and curated benchmark dataset.

作者信息

Budd Charlie, Garcia-Peraza-Herrera Luis C, Huber Martin, Ourselin Sebastien, Vercauteren Tom

机构信息

King's College London, UK.

Hypervision Surgical Ltd, UK.

出版信息

Comput Methods Biomech Biomed Eng Imaging Vis. 2023 Jul 4;11(4):1215-1224. doi: 10.1080/21681163.2022.2156393. Epub 2023 Jan 4.

Abstract

Endoscopic content area refers to the informative area enclosed by the dark, non-informative, border regions present in most endoscopic footage. The estimation of the content area is a common task in endoscopic image processing and computer vision pipelines. Despite the apparent simplicity of the problem, several factors make reliable real-time estimation surprisingly challenging. The lack of rigorous investigation into the topic combined with the lack of a common benchmark dataset for this task has been a long-lasting issue in the field. In this paper, we propose two variants of a lean GPU-based computational pipeline combining edge detection and circle fitting. The two variants differ by relying on handcrafted features, and learned features respectively to extract content area edge point candidates. We also present a first-of-its-kind dataset of manually annotated and pseudo-labelled content areas across a range of surgical indications. To encourage further developments, the curated dataset, and an implementation of both algorithms, has been made public (https://doi.org/10.7303/syn32148000, https://github.com/charliebudd/torch-content-area). We compare our proposed algorithm with a state-of-the-art U-Net-based approach and demonstrate significant improvement in terms of both accuracy (Hausdorff distance: 6.3 px versus 118.1 px) and computational time (Average runtime per frame: 0.13 ms versus 11.2 ms).

摘要

内镜内容区域是指在大多数内镜视频中由黑暗的、无信息的边界区域所包围的信息区域。内容区域的估计是内镜图像处理和计算机视觉流程中的一项常见任务。尽管这个问题表面上很简单,但有几个因素使得可靠的实时估计极具挑战性。对该主题缺乏严格的研究,再加上缺乏针对此任务的通用基准数据集,一直是该领域长期存在的问题。在本文中,我们提出了一种基于精简GPU的计算流程的两个变体,该流程结合了边缘检测和圆拟合。这两个变体的不同之处在于,分别依靠手工制作的特征和学习到的特征来提取内容区域边缘点候选。我们还展示了首个跨一系列手术指征的手动标注和伪标注内容区域的数据集。为鼓励进一步发展,精心策划的数据集以及这两种算法的实现已公开(https://doi.org/10.7303/syn32148000,https://github.com/charliebudd/torch-content-area)。我们将我们提出的算法与基于U-Net的最先进方法进行比较,并在准确性(豪斯多夫距离:6.3像素对118.1像素)和计算时间(每帧平均运行时间:0.13毫秒对11.2毫秒)方面都展示出显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab1/7615255/4d3912264a8c/EMS177365-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验