Bibekar Parth, Krapp Lucien, Peraro Matteo Dal
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
J Chem Theory Comput. 2024 Apr 23;20(8):2985-2991. doi: 10.1021/acs.jctc.3c01145. Epub 2024 Apr 11.
The Protein Structure Transformer (PeSTo), a geometric transformer, has exhibited exceptional performance in predicting protein-protein binding interfaces and distinguishing interfaces with nucleic acids, lipids, small molecules, and ions. In this study, we introduce PeSTo-Carbs, an extension of PeSTo specifically engineered to predict protein-carbohydrate binding interfaces. We evaluate the performance of this approach using independent test sets and compare them with those of previous methods. Furthermore, we highlight the model's capability to specialize in predicting interfaces involving cyclodextrins, a biologically and pharmaceutically significant class of carbohydrates. Our method consistently achieves remarkable accuracy despite the scarcity of available structural data for cyclodextrins.
蛋白质结构变换器(PeSTo)作为一种几何变换器,在预测蛋白质-蛋白质结合界面以及区分与核酸、脂质、小分子和离子的界面方面表现出卓越的性能。在本研究中,我们引入了PeSTo-Carbs,这是PeSTo的一个扩展版本,专门设计用于预测蛋白质-碳水化合物结合界面。我们使用独立测试集评估了这种方法的性能,并将其与先前方法的性能进行了比较。此外,我们强调了该模型在预测涉及环糊精的界面方面的能力,环糊精是一类在生物学和药学上具有重要意义的碳水化合物。尽管环糊精的可用结构数据稀缺,但我们的方法始终能达到显著的准确性。