IEEE Trans Med Imaging. 2024 Sep;43(9):3176-3187. doi: 10.1109/TMI.2024.3387830. Epub 2024 Sep 3.
Image-guided interventional oncology procedures can greatly enhance the outcome of cancer treatment. As an enhancing procedure, oncology smart material delivery can increase cancer therapy's quality, effectiveness, and safety. However, the effectiveness of enhancing procedures highly depends on the accuracy of smart material placement procedures. Inaccurate placement of smart materials can lead to adverse side effects and health hazards. Image guidance can considerably improve the safety and robustness of smart material delivery. In this study, we developed a novel generative deep-learning platform that highly prioritizes clinical practicality and provides the most informative intra-operative feedback for image-guided smart material delivery. XIOSIS generates a patient-specific 3D volumetric computed tomography (CT) from three intraoperative radiographs (X-ray images) acquired by a mobile C-arm during the operation. As the first of its kind, XIOSIS (i) synthesizes the CT from small field-of-view radiographs;(ii) reconstructs the intra-operative spacer distribution; (iii) is robust; and (iv) is equipped with a novel soft-contrast cost function. To demonstrate the effectiveness of XIOSIS in providing intra-operative image guidance, we applied XIOSIS to the duodenal hydrogel spacer placement procedure. We evaluated XIOSIS performance in an image-guided virtual spacer placement and actual spacer placement in two cadaver specimens. XIOSIS showed a clinically acceptable performance, reconstructed the 3D intra-operative hydrogel spacer distribution with an average structural similarity of 0.88 and Dice coefficient of 0.63 and with less than 1 cm difference in spacer location relative to the spinal cord.
影像引导下的介入肿瘤学操作可以极大地提高癌症治疗的效果。作为一种增强程序,肿瘤智能材料输送可以提高癌症治疗的质量、效果和安全性。然而,增强程序的效果高度依赖于智能材料放置程序的准确性。智能材料放置不准确可能会导致不良的副作用和健康危害。影像引导可以极大地提高智能材料输送的安全性和鲁棒性。在这项研究中,我们开发了一种新颖的生成式深度学习平台,高度重视临床实用性,并为影像引导的智能材料输送提供最具信息量的术中反馈。XIOSIS 从手术过程中移动 C 臂获取的三个术中射线照片(X 射线图像)中生成患者特定的 3D 容积计算机断层扫描(CT)。作为同类中的第一个,XIOSIS (i) 从小视野射线照片合成 CT;(ii) 重建术中间隔物分布;(iii) 具有鲁棒性;(iv) 配备了新颖的软对比度成本函数。为了证明 XIOSIS 在提供术中影像引导方面的有效性,我们将 XIOSIS 应用于十二指肠水凝胶间隔物放置程序。我们在影像引导的虚拟间隔物放置和两个尸体标本中的实际间隔物放置中评估了 XIOSIS 的性能。XIOSIS 表现出了可接受的临床性能,重建了 3D 术中水凝胶间隔物分布,平均结构相似度为 0.88,Dice 系数为 0.63,与脊髓的间隔物位置差异小于 1 厘米。