School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, United Kingdom.
Bioinformatics. 2024 Mar 29;40(4). doi: 10.1093/bioinformatics/btae200.
Aging is intricately linked to diseases and mortality. It is reflected in molecular changes across various tissues which can be leveraged for the development of biomarkers of aging using machine learning models, known as aging clocks. Despite advancements in the field, a significant challenge remains: the lack of robust, Python-based software tools for integrating and comparing these diverse models. This gap highlights the need for comprehensive solutions that can handle the complexity and variety of data in aging research.
To address this gap, I introduce pyaging, a comprehensive open-source Python package designed to facilitate aging research. pyaging harmonizes dozens of aging clocks, covering a range of molecular data types such as DNA methylation, transcriptomics, histone mark ChIP-Seq, and ATAC-Seq. The package is not limited to traditional model types; it features a diverse array, from linear and principal component models to neural networks and automatic relevance determination models. Thanks to a PyTorch-based backend that enables GPU acceleration, pyaging is capable of rapid inference, even when dealing with large datasets and complex models. In addition, the package's support for multi-species analysis extends its utility across various organisms, including humans, various mammals, and Caenorhabditis elegans.
pyaging is accessible on GitHub, at https://github.com/rsinghlab/pyaging, and the distribution is available on PyPi, at https://pypi.org/project/pyaging/. The software is also archived on Zenodo, at https://zenodo.org/doi/10.5281/zenodo.10335011.
衰老与疾病和死亡率密切相关。它反映在各种组织中的分子变化上,可以利用机器学习模型(称为衰老时钟)来开发衰老的生物标志物。尽管该领域取得了进展,但仍然存在一个重大挑战:缺乏用于整合和比较这些不同模型的强大的基于 Python 的软件工具。这一差距突出表明需要全面的解决方案来处理衰老研究中数据的复杂性和多样性。
为了解决这一差距,我引入了 pyaging,这是一个全面的开源 Python 包,旨在促进衰老研究。pyaging 协调了数十种衰老时钟,涵盖了多种分子数据类型,如 DNA 甲基化、转录组学、组蛋白标记 ChIP-Seq 和 ATAC-Seq。该软件包不仅限于传统的模型类型;它具有多种模型类型,包括线性和主成分模型、神经网络和自动相关性确定模型。由于其基于 PyTorch 的后端支持 GPU 加速,pyaging 能够实现快速推断,即使在处理大型数据集和复杂模型时也是如此。此外,该软件包对多物种分析的支持扩展了其在各种生物体中的效用,包括人类、各种哺乳动物和秀丽隐杆线虫。
pyaging 可在 GitHub 上访问,网址为 https://github.com/rsinghlab/pyaging,也可在 PyPi 上获取,网址为 https://pypi.org/project/pyaging/。该软件还在 Zenodo 上存档,网址为 https://zenodo.org/doi/10.5281/zenodo.10335011。