Suppr超能文献

利用单分子荧光技术探索 G 蛋白偶联受体构象动力学。

Exploring GPCR conformational dynamics using single-molecule fluorescence.

机构信息

UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA.

Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.

出版信息

Methods. 2024 Jun;226:35-48. doi: 10.1016/j.ymeth.2024.03.011. Epub 2024 Apr 10.

Abstract

G protein-coupled receptors (GPCRs) are membrane proteins that transmit specific external stimuli into cells by changing their conformation. This conformational change allows them to couple and activate G-proteins to initiate signal transduction. A critical challenge in studying and inferring these structural dynamics arises from the complexity of the cellular environment, including the presence of various endogenous factors. Due to the recent advances in cell-expression systems, membrane-protein purification techniques, and labeling approaches, it is now possible to study the structural dynamics of GPCRs at a single-molecule level both in vitro and in live cells. In this review, we discuss state-of-the-art techniques and strategies for expressing, purifying, and labeling GPCRs in the context of single-molecule research. We also highlight four recent studies that demonstrate the applications of single-molecule microscopy in revealing the dynamics of GPCRs. These techniques are also useful as complementary methods to verify the results obtained from other structural biology tools like cryo-electron microscopy and x-ray crystallography.

摘要

G 蛋白偶联受体(GPCRs)是一种膜蛋白,通过改变其构象将特定的外部刺激传递到细胞内。这种构象变化使它们能够与 G 蛋白偶联并激活,从而启动信号转导。在研究和推断这些结构动力学时,一个关键的挑战来自于细胞环境的复杂性,包括各种内源性因素的存在。由于细胞表达系统、膜蛋白纯化技术和标记方法的最新进展,现在可以在体外和活细胞中以单分子水平研究 GPCR 的结构动力学。在这篇综述中,我们讨论了在单分子研究中表达、纯化和标记 GPCR 的最新技术和策略。我们还强调了四项最近的研究,这些研究展示了单分子显微镜在揭示 GPCR 动力学方面的应用。这些技术也可以作为对其他结构生物学工具(如冷冻电子显微镜和 X 射线晶体学)获得的结果进行验证的补充方法。

相似文献

1
Exploring GPCR conformational dynamics using single-molecule fluorescence.
Methods. 2024 Jun;226:35-48. doi: 10.1016/j.ymeth.2024.03.011. Epub 2024 Apr 10.
2
Structure determination of GPCRs: cryo-EM compared with X-ray crystallography.
Biochem Soc Trans. 2021 Nov 1;49(5):2345-2355. doi: 10.1042/BST20210431.
3
Illuminating the Path to Target GPCR Structures and Functions.
Biochemistry. 2020 Oct 13;59(40):3783-3795. doi: 10.1021/acs.biochem.0c00606. Epub 2020 Sep 29.
4
Studying GPCR conformational dynamics by single molecule fluorescence.
Mol Cell Endocrinol. 2019 Aug 1;493:110469. doi: 10.1016/j.mce.2019.110469. Epub 2019 Jun 1.
5
Intramolecular and Intermolecular FRET Sensors for GPCRs - Monitoring Conformational Changes and Beyond.
Trends Pharmacol Sci. 2018 Feb;39(2):123-135. doi: 10.1016/j.tips.2017.10.011. Epub 2017 Nov 25.
6
GPCR structural characterization by NMR spectroscopy in solution.
Acta Biochim Biophys Sin (Shanghai). 2022 Aug 25;54(9):1207-1212. doi: 10.3724/abbs.2022106.
7
Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics.
Chem Rev. 2017 Jan 11;117(1):186-245. doi: 10.1021/acs.chemrev.6b00084. Epub 2016 Jun 24.
8
Single-Molecule Imaging of GPCR Interactions.
Trends Pharmacol Sci. 2018 Feb;39(2):109-122. doi: 10.1016/j.tips.2017.10.010. Epub 2017 Nov 17.
9
The subcellular dynamics of GPCR signaling.
Mol Cell Endocrinol. 2019 Mar 1;483:24-30. doi: 10.1016/j.mce.2018.12.020. Epub 2019 Jan 2.
10
NMR analysis of GPCR conformational landscapes and dynamics.
Mol Cell Endocrinol. 2019 Mar 15;484:69-77. doi: 10.1016/j.mce.2018.12.019. Epub 2019 Jan 25.

引用本文的文献

1
Effects of chemosynthetic choline plasmalogens on gonadotropin secretion from bovine gonadotrophs.
J Reprod Dev. 2025 Aug 1;71(4):201-209. doi: 10.1262/jrd.2025-019. Epub 2025 Jun 7.
2
Single-Molecule Insights into GPCR Conformational Landscapes.
J Membr Biol. 2025 Apr;258(2):113-120. doi: 10.1007/s00232-025-00338-3. Epub 2025 Feb 17.
3
Quaternary arrangements of membrane proteins: an aquaporin case.
Biochem Soc Trans. 2024 Dec 19;52(6):2557-2568. doi: 10.1042/BST20241630.

本文引用的文献

2
Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution.
Nat Nanotechnol. 2024 Jan;19(1):85-94. doi: 10.1038/s41565-023-01547-4. Epub 2023 Nov 27.
3
Functional GPCR Expression in Eukaryotic LEXSY System.
J Mol Biol. 2023 Dec 1;435(23):168310. doi: 10.1016/j.jmb.2023.168310. Epub 2023 Oct 6.
4
Single-molecule analysis reveals that a glucagon-bound extracellular domain of the glucagon receptor is dynamic.
J Biol Chem. 2023 Sep;299(9):105160. doi: 10.1016/j.jbc.2023.105160. Epub 2023 Aug 14.
5
Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition.
Structure. 2023 Jul 6;31(7):836-847.e6. doi: 10.1016/j.str.2023.05.001. Epub 2023 May 25.
6
Plasma membrane preassociation drives β-arrestin coupling to receptors and activation.
Cell. 2023 May 11;186(10):2238-2255.e20. doi: 10.1016/j.cell.2023.04.018. Epub 2023 May 4.
7
Anionic phospholipids control mechanisms of GPCR-G protein recognition.
Nat Commun. 2023 Feb 13;14(1):794. doi: 10.1038/s41467-023-36425-z.
8
Structures of the entire human opioid receptor family.
Cell. 2023 Jan 19;186(2):413-427.e17. doi: 10.1016/j.cell.2022.12.026. Epub 2023 Jan 12.
10
Single-molecule counting applied to the study of GPCR oligomerization.
Biophys J. 2022 Sep 6;121(17):3175-3187. doi: 10.1016/j.bpj.2022.07.034. Epub 2022 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验