Suppr超能文献

光遗传学测定动态和细胞类型特异性抑制反转电位。

Optogenetic Determination of Dynamic and Cell-Type-Specific Inhibitory Reversal Potentials.

机构信息

Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom.

Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom.

出版信息

J Neurosci. 2024 May 15;44(20):e1392232024. doi: 10.1523/JNEUROSCI.1392-23.2024.

Abstract

The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (E) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe E in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in E dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting E differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific E dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.

摘要

反转电位是指跨膜离子梯度使通道净电流流向发生反转时的膜电位。反转电位由跨膜离子梯度决定,反过来又决定了通道的活动将如何影响膜电位。传统的抑制性配体门控离子通道(E)反转电位的研究依赖于内源性受体的激活,如 GABA-A 受体(GABAR)。然而,激活内源性受体存在一些挑战,包括激动剂的传递、分离通道反应以及受体饱和和脱敏的影响。在这里,我们展示了使用光门控阴离子通道 stGtACR2 来探测啮齿动物大脑中 E 的实用性。我们使用雌雄小鼠证明了这种光激活通道的特性使其成为研究 GABAR 受体介导抑制的合适替代物。我们在体外和体内验证了这种不依赖激动剂的光遗传学策略,并进一步展示了它如何准确捕捉内源性离子流操纵后 E 动力学的差异。这使我们能够探索不同遗传定义的神经元亚群之间的不同静息 E 差异。通过使用这种方法来挑战神经元中的离子动态平衡机制,我们揭示了由内源性离子处理机制的差异表达支持的特定于细胞的 E 动力学。因此,我们的发现确立了一种有效的光学策略,用于揭示抑制性反转电位的新方面,从而扩展了光遗传学的应用范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验