Shi Yunru, Hu Yi-Fan, Ye Jinyu, Zhong Gang, Xia Chungu, Liu Zhi-Pan, Huang Yang, He Lin
State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.
University of Chinese Academy of Science, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2024 Jun 17;63(25):e202401311. doi: 10.1002/anie.202401311. Epub 2024 May 14.
Electrocatalytic carbonylation of CO and CHOH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd and Pd surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted PdCu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0 V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.
在金属钯(Pd)电极上通过电催化将一氧化碳(CO)和甲醇(CHOH)羰基化制备碳酸二甲酯(DMC),为阳极的C1资源化提供了一种有前景的策略。然而,其更广泛的应用受到高工作电位以及伴随严重甲醇自氧化的低DMC选择性的限制。在此,我们对Pd和Pd表面上中间吸附相互作用的理论分析表明,在强氧化电位下Pd表面不可避免的重构降低了其对CO的吸附能力,从而损害了DMC的形成。进一步的理论建模表明,用Cu掺杂Pd不仅能在氧化环境中稳定低价态的Pd,还能降低DMC形成的整体能垒。基于这一见解,我们开发了一种简便的两步热冲击法来制备用于DMC的PdCu合金电催化剂。值得注意的是,预测的PdCu在现有的Pd基电催化剂中表现出最高的DMC选择性,相对于Ag/AgCl电极在1.0 V时达到了93 %的峰值DMC选择性。(准)原位光谱研究进一步证实了Cu掺杂剂在促进Pd催化DMC形成中的预测双重作用。