Suppr超能文献

基于 SEER 数据库的肺大细胞神经内分泌癌患者的预后因素和预测模型。

Prognostic factors and predictive models for patients with lung large cell neuroendocrine carcinoma: Based on SEER database.

机构信息

Zigong First People's Hospital, Zigong City, Sichuan Province, China.

Dazhou Dachuan District People's Hospital, Dazhou, Sichuan Province, China.

出版信息

Clin Respir J. 2024 Apr;18(4):e13752. doi: 10.1111/crj.13752.

Abstract

BACKGROUND

Lung Large cell neuroendocrine carcinoma (LCNEC) is a rare, aggressive, high-grade neuroendocrine carcinoma with a poor prognosis, mainly seen in elderly men. To date, we have found no studies on predictive models for LCNEC.

METHODS

We extracted data from the Surveillance, Epidemiology, and End Results (SEER) database of confirmed LCNEC from 2010 to 2018. Univariate and multivariate Cox proportional risk regression analyses were used to identify independent risk factors, and then we constructed a novel nomogram and assessed the predictive effectiveness by receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).

RESULTS

A total of 2546 patients with LCNEC were included, excluding those diagnosed with autopsy or death certificate, tumor, lymph node, metastasis (TNM) stage, tumor grade deficiency, etc., and finally, a total of 743 cases were included in the study. After univariate and multivariate analyses, we concluded that the independent risk factors were N stage, intrapulmonary metastasis, bone metastasis, brain metastasis, and surgical intervention. The results of ROC curves, calibration curves, and DCA in the training and validation groups confirmed that the nomogram could accurately predict the prognosis.

CONCLUSIONS

The nomogram obtained from our study is expected to be a useful tool for personalized prognostic prediction of LCNEC patients, which may help in clinical decision-making.

摘要

背景

肺大细胞神经内分泌癌(LCNEC)是一种罕见的、侵袭性的、高级别的神经内分泌癌,预后较差,主要见于老年男性。迄今为止,我们尚未发现针对 LCNEC 的预测模型研究。

方法

我们从 2010 年至 2018 年的监测、流行病学和最终结果(SEER)数据库中提取了确诊为 LCNEC 的患者数据。采用单因素和多因素 Cox 比例风险回归分析来确定独立的危险因素,然后构建了一个新的列线图,并通过接受者操作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)来评估预测效果。

结果

共纳入 2546 例 LCNEC 患者,排除尸检或死亡证明诊断、肿瘤、淋巴结、转移(TNM)分期、肿瘤分级不足等情况,最终纳入研究的共 743 例。经过单因素和多因素分析,我们得出独立的危险因素为 N 分期、肺内转移、骨转移、脑转移和手术干预。训练组和验证组的 ROC 曲线、校准曲线和 DCA 结果证实,该列线图能够准确预测预后。

结论

我们研究得出的列线图有望成为预测 LCNEC 患者个体化预后的有用工具,可能有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3090/11010265/a02df1987210/CRJ-18-e13752-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验