文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自调节 CAR-T 细胞调节过继性 T 细胞疗法中的细胞因子释放综合征。

Self-regulating CAR-T cells modulate cytokine release syndrome in adoptive T-cell therapy.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

Department of Molecular Biology, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

J Exp Med. 2024 Jun 3;221(6). doi: 10.1084/jem.20221988. Epub 2024 Apr 12.


DOI:10.1084/jem.20221988
PMID:38607370
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11010356/
Abstract

Cytokine release syndrome (CRS) is a frequently observed side effect of chimeric antigen receptor (CAR)-T cell therapy. Here, we report self-regulating T cells that reduce CRS severity by secreting inhibitors of cytokines associated with CRS. With a humanized NSG-SGM3 mouse model, we show reduced CRS-related toxicity in mice treated with CAR-T cells secreting tocilizumab-derived single-chain variable fragment (Toci), yielding a safety profile superior to that of single-dose systemic tocilizumab administration. Unexpectedly, Toci-secreting CD19 CAR-T cells exhibit superior in vivo antitumor efficacy compared with conventional CD19 CAR-T cells. scRNA-seq analysis of immune cells recovered from tumor-bearing humanized mice revealed treatment with Toci-secreting CD19 CAR-T cells enriches for cytotoxic T cells while retaining memory T-cell phenotype, suggesting Toci secretion not only reduces toxicity but also significantly alters the overall T-cell composition. This approach of engineering T cells to self-regulate inflammatory cytokine production is a clinically compatible strategy with the potential to simultaneously enhance safety and efficacy of CAR-T cell therapy for cancer.

摘要

细胞因子释放综合征 (CRS) 是嵌合抗原受体 (CAR)-T 细胞疗法中经常观察到的副作用。在这里,我们报告了能够通过分泌与 CRS 相关的细胞因子抑制剂来减轻 CRS 严重程度的自调控 T 细胞。通过使用人源化 NSG-SGM3 小鼠模型,我们发现用分泌托珠单抗衍生的单链可变片段 (Toci) 的 CAR-T 细胞治疗的小鼠中,与 CRS 相关的毒性降低,安全性优于单次全身给予托珠单抗。出乎意料的是,与传统的 CD19 CAR-T 细胞相比,分泌 Toci 的 CD19 CAR-T 细胞在体内具有更好的抗肿瘤疗效。对来自荷人源化肿瘤小鼠的免疫细胞进行单细胞 RNA 测序分析表明,用分泌 Toci 的 CD19 CAR-T 细胞治疗可富集细胞毒性 T 细胞,同时保留记忆 T 细胞表型,表明 Toci 的分泌不仅降低了毒性,而且还显著改变了整体 T 细胞组成。这种对 T 细胞进行工程改造以自我调控炎症细胞因子产生的方法是一种与临床兼容的策略,具有提高 CAR-T 细胞治疗癌症的安全性和疗效的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/166a219b1921/JEM_20221988_Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/5e76a652f866/JEM_20221988_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/07c330e1bab0/JEM_20221988_FigS1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/1d43ae298627/JEM_20221988_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/702b2c51924a/JEM_20221988_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/828f36d92b71/JEM_20221988_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/8f5ccc1a7205/JEM_20221988_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/e163629f7121/JEM_20221988_Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/c7cce290a8ce/JEM_20221988_Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/7d131c5c2cfa/JEM_20221988_Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/e88f49fec184/JEM_20221988_Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/303aaa6c1033/JEM_20221988_FigS2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/efd8bec1c93a/JEM_20221988_FigS3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/dd73b30eb440/JEM_20221988_FigS4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/166a219b1921/JEM_20221988_Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/5e76a652f866/JEM_20221988_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/07c330e1bab0/JEM_20221988_FigS1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/1d43ae298627/JEM_20221988_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/702b2c51924a/JEM_20221988_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/828f36d92b71/JEM_20221988_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/8f5ccc1a7205/JEM_20221988_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/e163629f7121/JEM_20221988_Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/c7cce290a8ce/JEM_20221988_Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/7d131c5c2cfa/JEM_20221988_Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/e88f49fec184/JEM_20221988_Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/303aaa6c1033/JEM_20221988_FigS2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/efd8bec1c93a/JEM_20221988_FigS3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/dd73b30eb440/JEM_20221988_FigS4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3752/11010356/166a219b1921/JEM_20221988_Fig10.jpg

相似文献

[1]
Self-regulating CAR-T cells modulate cytokine release syndrome in adoptive T-cell therapy.

J Exp Med. 2024-6-3

[2]
Low Peripheral Blood Counts and Elevated Proinflammatory Cytokines Signal a Poor CD19 Chimeric Antigen Receptor T-cell Response in Acute Lymphoblastic Leukemia.

Transplant Cell Ther. 2025-5-20

[3]
Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma.

Cochrane Database Syst Rev. 2021-9-13

[4]
Cytokine Release Syndrome and Neurotoxicity Following CD19 CAR-T in B-Cell Lymphoma.

Transplant Cell Ther. 2025-4-25

[5]
Mitigation and Management of Common Toxicities Associated with the Administration of CAR-T Therapies in Oncology Patients.

Drug Saf. 2025-3-19

[6]
Novel CD19 Fast-CAR-T cells vs. CD19 conventional CAR-T cells for the treatment of relapsed/refractory CD19-positive B-cell acute lymphoblastic leukemia.

Chin Med J (Engl). 2025-7-21

[7]
Role of procalcitonin, C-reactive protein and ferritin in cytokine release syndrome after CAR T-cell therapy in children and young adults.

Biomarkers. 2025-3

[8]
Toxicities and outcome after CD19-directed chimeric antigen receptor T-cell therapy for secondary neurolymphomatosis.

Am J Hematol. 2024-12

[9]
Metabolic reprogramming via an engineered PGC-1α improves human chimeric antigen receptor T-cell therapy against solid tumors.

J Immunother Cancer. 2023-3

[10]
Utilizing plasma exchange for severe cytokine release syndrome after CAR-T cell therapy: clinical experience and literature insights.

Front Immunol. 2025-6-24

引用本文的文献

[1]
Can We Use CAR-T Cells to Overcome Immunosuppression in Solid Tumours?

Biology (Basel). 2025-8-12

[2]
Recent advances in universal chimeric antigen receptor T cell therapy.

J Hematol Oncol. 2025-8-29

[3]
Overcoming the blood-brain barrier (BBB) in pediatric CNS tumors: immunotherapy and nanomedicine-driven strategies.

Med Oncol. 2025-8-19

[4]
Precision sniper for solid tumors: CAR-NK cell therapy.

Cancer Immunol Immunother. 2025-7-24

[5]
Advancing CAR-based cell therapies for solid tumours: challenges, therapeutic strategies, and perspectives.

Mol Cancer. 2025-7-7

[6]
Targeting Regnase-1 unleashes CAR T cell antitumor activity for osteosarcoma and creates a proinflammatory tumor microenvironment.

bioRxiv. 2025-5-23

[7]
Toxicities Associated with CAR-T Cell Therapies.

Mediterr J Hematol Infect Dis. 2025-5-1

[8]
Epigenetic regulators combined with tumour immunotherapy: current status and perspectives.

Clin Epigenetics. 2025-3-21

[9]
In-depth analysis of the safety of CAR-T cell therapy for solid tumors.

Front Immunol. 2025-2-24

[10]
Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond.

Front Immunol. 2025-2-19

本文引用的文献

[1]
CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results.

Nat Med. 2023-7

[2]
Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity.

Cancer Cell. 2022-5-9

[3]
Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial.

Nat Med. 2022-4

[4]
Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial.

Nat Med. 2022-2

[5]
CAR T-cell therapy in primary central nervous system lymphoma: the clinical experience of the French LOC network.

Blood. 2022-2-3

[6]
Prophylactic Tocilizumab Prior to Anti-CD19 CAR-T Cell Therapy for Non-Hodgkin Lymphoma.

Front Immunol. 2021

[7]
Chimeric antigen receptor T cells self-neutralizing IL6 storm in patients with hematologic malignancy.

Cell Discov. 2021-9-14

[8]
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study.

Lancet. 2021-7-24

[9]
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study.

Lancet. 2021-8-7

[10]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索