Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, the Netherlands.
Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, the Netherlands.
Sci Total Environ. 2024 Jun 10;928:172339. doi: 10.1016/j.scitotenv.2024.172339. Epub 2024 Apr 10.
The availability of suitable electron donors and acceptors limits micropollutant natural attenuation in oligotrophic groundwater. This study investigated how electron donors with different biodegradability (humics, dextran, acetate, and ammonium), and different oxygen concentrations affect the biodegradation of 15 micropollutants (initial concentration of each micropollutant = 50 μg/L) in simulated nitrate reducing aquifers. Tests mimicking nitrate reducing field conditions showed no micropollutant biodegradation, even with electron donor amendment. However, 2,4-dichlorophenoxyacetic acid and mecoprop were biodegraded under (micro)aerobic conditions with and without electron donor addition. The highest 2,4-dichlorophenoxyacetic acid and mecoprop biodegradation rates and removal efficiencies were obtained under fully aerobic conditions with amendment of an easily biodegradable electron donor. Under microaerobic conditions, however, amendment with easily biodegradable dissolved organic carbon (DOC) inhibited micropollutant biodegradation due to competition between micropollutants and DOC for the limited oxygen available. Microbial community composition was dictated by electron acceptor availability and electron donor amendment, not by micropollutant biodegradation. Low microbial community richness and diversity led to the absence of biodegradation of the other 13 micropollutants (such as bentazon, chloridazon, and carbamazepine). Finally, adaptation and potential growth of biofilms interactively determined the location of the micropollutant removal zone relative to the point of amendment. This study provides new insight on how to stimulate in situ micropollutant biodegradation to remediate oligotrophic groundwaters as well as possible limitations of this process.
在贫营养型地下水中,合适的电子供体和受体的可利用性限制了微量污染物的自然衰减。本研究调查了具有不同生物降解性(腐殖质、葡聚糖、乙酸盐和铵盐)和不同氧浓度的电子供体如何影响模拟硝酸盐还原含水层中 15 种微量污染物(每种微量污染物的初始浓度为 50μg/L)的生物降解。模拟硝酸盐还原现场条件的测试表明,即使添加电子供体,也没有微量污染物的生物降解。然而,在有氧和无氧条件下添加电子供体,2,4-二氯苯氧乙酸和甲草胺可被生物降解。在有氧条件下,添加易于生物降解的电子供体时,2,4-二氯苯氧乙酸和甲草胺的生物降解率和去除效率最高。然而,在微氧条件下,由于微量污染物和 DOC 之间对有限的氧气的竞争,添加易于生物降解的溶解有机碳 (DOC) 会抑制微量污染物的生物降解。微生物群落组成取决于电子受体的可利用性和电子供体的添加,而不是微量污染物的生物降解。低微生物群落丰富度和多样性导致其他 13 种微量污染物(如苯达松、氯丹和卡马西平)没有被生物降解。最后,生物膜的适应和潜在生长相互作用决定了相对于添加点的微量污染物去除区的位置。本研究提供了关于如何刺激原位微量污染物生物降解来修复贫营养型地下水以及该过程可能存在的限制的新见解。