Suppr超能文献

人柯蒂氏器结构和耳蜗分区-音调变异性及细胞间信号传递的微解剖。

Microanatomy of the human tunnel of Corti structures and cochlear partition-tonotopic variations and transcellular signaling.

机构信息

Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.

The Rudbeck TEM Laboratory, BioVis Platform, Uppsala University, Uppsala, Sweden.

出版信息

J Anat. 2024 Aug;245(2):271-288. doi: 10.1111/joa.14045. Epub 2024 Apr 13.

Abstract

Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.

摘要

听觉敏感性和频率分辨率取决于将声音引起的振动从基底膜 (BM) 最优地传递到内耳毛细胞 (IHC),这是主要的听觉受体。关于在人类耳蜗的频率范围内如何实现这一点,仍然缺乏信息。目前的大部分知识要么来自动物实验,要么来自死后处理的人类组织,提供的结构保存和光学分辨率有限。在我们的研究中,我们使用独特保存的正常人类组织的高分辨率显微镜分析了不同频率位置的人类耳蜗分区的细胞结构。这些结果可能具有临床意义,并增加我们对频率相关声振动如何传递到人类 IHC 的理解。从 lateral skull base 手术中独特保存的正常人类耳蜗的 1 微米厚的塑料包埋切片(mid-modiolar),使用光和透射电子显微镜 (LM、TEM) 进行了分析。使用同步辐射相衬成像 (SR-PCI) 估计了频率位置。还使用了为扫描电子显微镜 (SEM) 和超分辨率结构照明显微镜 (SR-SIM) 准备的存档人类组织,并在本研究中进行了比较。显微镜显示,人类耳蜗分区的尺寸和结构在整个频率范围内存在很大差异。柱细胞几何形状受到严格调节,取决于网状层斜率和鼓膜唇角度。内侧从鼓膜唇下的内嵴延伸出表达 II 型胶原蛋白的层,在这里称为“辅助基底膜”。它与鼓膜唇和内柱脚相连,可能有助于耳蜗分区的整体顺应性。基于这些发现,我们推测了将不同的声音引起的振动传递到 IHC 的显著微观解剖弯曲和几何关系,包括它们与人类语音接收和听觉植入的电刺激的相关性。内柱跨细胞微管/肌动蛋白系统将振动能直接转换为 IHC 表皮板和纤毛束的作用被强调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/178d/11259753/3a053403543f/JOA-245-271-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验