Suppr超能文献

量化加拿大野火对区域空气污染网络的影响。

Quantifying the impacts of Canadian wildfires on regional air pollution networks.

作者信息

McCracken Teague, Chen Pei, Metcalf Andrew, Fan Chao

机构信息

School of Civil and Environmental Engineering, Clemson University, 455 Bracket Hall, Clemson, SC 29631, USA.

Department of Computer Science and Engineering, Texas A&M University, L.F. Peterson Building, College Station, TX 77843, USA.

出版信息

Sci Total Environ. 2024 Jun 10;928:172461. doi: 10.1016/j.scitotenv.2024.172461. Epub 2024 Apr 12.

Abstract

Wildfire smoke greatly impacts regional atmospheric systems, causing changes in the behavior of pollution. However, the impacts of wildfire smoke on pollution behavior are not easily quantifiable due to the complex nature of atmospheric systems. Air pollution correlation networks have been used to quantify air pollution behavior during ambient conditions. However, it is unknown how extreme pollution events impact these networks. Therefore, we propose a multidimensional air pollution correlation network framework to quantify the impacts of wildfires on air pollution behavior. The impacts are quantified by comparing two time periods, one during the 2023 Canadian wildfires and one during normal conditions with two complex network types for each period. In this study, the value network represents PM concentrations and the rate network represents the rate of change of PM concentrations. Wildfires' impacts on air pollution behavior are captured by structural changes in the networks. The wildfires caused a discontinuous phase transition during percolation in both network types which represents non-random organization of the most significant spatiotemporal correlations. Additionally, wildfires caused changes to the connectivity of stations leading to more interconnected networks with different influential stations. During the wildfire period, highly polluted areas are more likely to form connections in the network, quantified by an 86 % and 19 % increase in the connectivity of the value and rate networks respectively compared to the normal period. In this study, we create novel understandings of the impacts of wildfires on air pollution correlation networks, show how our method can create important insights into air pollution patterns, and discuss potential applications of our methodologies. This study aims to enhance capabilities for wildfire smoke exposure mitigation and response strategies.

摘要

野火烟雾对区域大气系统有很大影响,会导致污染行为发生变化。然而,由于大气系统的复杂性,野火烟雾对污染行为的影响不易量化。空气污染关联网络已被用于量化环境条件下的空气污染行为。然而,极端污染事件如何影响这些网络尚不清楚。因此,我们提出了一个多维空气污染关联网络框架,以量化野火对空气污染行为的影响。通过比较两个时间段来量化影响,一个是2023年加拿大野火期间,另一个是正常条件下,每个时间段使用两种复杂网络类型。在本研究中,值网络代表颗粒物浓度,速率网络代表颗粒物浓度的变化率。野火对空气污染行为的影响通过网络结构变化来体现。野火在两种网络类型的渗流过程中都导致了不连续的相变,这代表了最重要的时空相关性的非随机组织。此外,野火导致监测站连接性发生变化,形成了更多相互连接的网络,且有不同的影响站点。在野火期间,高污染区域在网络中更有可能形成连接,与正常时期相比,值网络和速率网络的连接性分别增加了86%和19%。在本研究中,我们对野火对空气污染关联网络的影响有了新的认识,展示了我们的方法如何能对空气污染模式产生重要见解,并讨论了我们方法的潜在应用。本研究旨在提高减轻野火烟雾暴露的能力和应对策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验