Ji Chenhao, Wu Shuanglin, Tang Feng, Yu Yanting, Hung Fenglin, Wei Qufu
Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China..
Carbohydr Polym. 2024 Jul 1;335:122075. doi: 10.1016/j.carbpol.2024.122075. Epub 2024 Mar 20.
Polyethylene oxide (PEO) solid electrolytes, acknowledged for their safety advantages over liquid counterparts, confront inherent challenges, including low ionic conductivity, restricted lithium ion migration, and mechanical fragility, notably pronounced in lithium‑sulfur batteries due to the polysulfide shuttling phenomenon. To address these limitations, we integrate a quaternary ammonium cation-modified cellulose (QACC) nanofiber, electrospun with cellulose acetate (CA) from recycled cigarette filters, into the PEO electrolyte matrix. The nitrogen atom within the quaternary ammonium group exhibits a pronounced affinity for polysulfide compounds, effectively curtailing polysulfide migration. Concurrently, Lewis acid-base interactions between quaternary ammonium groups and lithium salt anions facilitate the release of additional Li, achieving a lithium-ion transference number 1.5 times higher than its pure PEO counterpart. Furthermore, the introduction of a larger trifluoromethanesulfonimide (TFSI) group on the QACC macromolecule (TFSI-QACC) disrupts the ordered arrangement of PEO macromolecules, resulting in a noteworthy enhancement in ionic conductivity, reaching 2.07 × 10 S cm at 60 °C, thus addressing the challenge of low PEO electrolyte conductivity. Moreover, the nanofiber enhances the mechanical strength of the PEO electrolyte from 0.49 to 7.50 MPa, mitigating safety concerns related to lithium dendrites puncturing the electrolyte. Consequently, the composite PEO demonstrates exemplary performance in lithium symmetrical batteries, enduring 500 h of continuous operation and completing 100 cycles at both room and elevated temperatures. This integrated approach, transitioning from waste to wealth, adeptly addresses a spectrum of challenges in the efficiency of solid-state electrolytes, holding considerable promise for advancing lithium‑sulfur battery technology.
聚环氧乙烷(PEO)固体电解质因其相对于液体电解质的安全优势而受到认可,但面临着一些固有挑战,包括离子电导率低、锂离子迁移受限以及机械脆性,在锂硫电池中由于多硫化物穿梭现象,这些问题尤为突出。为了解决这些限制,我们将一种季铵阳离子改性纤维素(QACC)纳米纤维集成到PEO电解质基质中,该纳米纤维是由回收香烟过滤嘴中的醋酸纤维素(CA)通过静电纺丝制备而成。季铵基团中的氮原子对多硫化物化合物具有显著的亲和力,有效抑制了多硫化物的迁移。同时,季铵基团与锂盐阴离子之间的路易斯酸碱相互作用促进了额外Li⁺的释放,实现了锂离子迁移数比纯PEO对应物高1.5倍。此外,在QACC大分子上引入更大的三氟甲磺酰亚胺(TFSI)基团(TFSI-QACC)破坏了PEO大分子的有序排列,导致离子电导率显著提高,在60℃时达到2.07×10⁻⁴ S cm⁻¹,从而解决了PEO电解质电导率低的挑战。此外,纳米纤维将PEO电解质的机械强度从0.49 MPa提高到7.50 MPa,减轻了与锂枝晶刺穿电解质相关的安全问题。因此,复合PEO在锂对称电池中表现出优异的性能,在室温和高温下均可连续运行500小时并完成100次循环。这种变废为宝的集成方法巧妙地解决了固态电解质效率方面的一系列挑战,为推进锂硫电池技术带来了巨大希望。