Kim Dae Won, Chen Yu, Kim Hyunlim, Kim Namju, Lee Young Hoon, Oh Hyunchul, Chung Yongchul G, Hong Chang Seop
Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
Adv Mater. 2024 Jun;36(26):e2401739. doi: 10.1002/adma.202401739. Epub 2024 Apr 23.
Hydrogen storage is crucial in the shift toward a carbon-neutral society, where hydrogen serves as a pivotal renewable energy source. Utilizing porous materials can provide an efficient hydrogen storage solution, reducing tank pressures to manageable levels and circumventing the energy-intensive and costly current technological infrastructure. Herein, two highly porous aromatic frameworks (PAFs), C-PAF and Si-PAF, prepared through a Yamamoto C─C coupling reaction between trigonal prismatic monomers, are reported. These PAFs exhibit large pore volumes and Brunauer-Emmett-Teller areas, 3.93 cm g and 4857 m g for C-PAF, and 3.80 cm g and 6099 m g for Si-PAF, respectively. Si-PAF exhibits a record-high gravimetric hydrogen delivery capacity of 17.01 wt% and a superior volumetric capacity of 46.5 g L under pressure-temperature swing adsorption conditions (77 K, 100 bar → 160 K, 5 bar), outperforming benchmark hydrogen storage materials. By virtue of the robust C─C covalent bond, both PAFs show impressive structural stabilities in harsh environments and unprecedented long-term durability. Computational modeling methods are employed to simulate and investigate the structural and adsorption properties of the PAFs. These results demonstrate that C-PAF and Si-PAF are promising materials for efficient hydrogen storage.
在向碳中和社会转型的过程中,氢储存至关重要,因为氢是一种关键的可再生能源。利用多孔材料可以提供一种高效的氢储存解决方案,将罐体压力降低到可管理的水平,并规避当前能源密集型且成本高昂的技术基础设施。在此,报道了通过三角棱柱形单体之间的山本C─C偶联反应制备的两种高度多孔的芳香框架(PAF),即C-PAF和Si-PAF。这些PAF表现出大的孔体积和布鲁诺尔-埃米特-泰勒比表面积,C-PAF分别为3.93 cm³/g和4857 m²/g,Si-PAF分别为3.80 cm³/g和6099 m²/g。在变压变温吸附条件(77 K,100 bar → 160 K,5 bar)下,Si-PAF表现出创纪录的高重量氢释放容量17.01 wt%和优越的体积容量46.5 g/L,优于基准储氢材料。由于强大的C─C共价键,两种PAF在恶劣环境中都表现出令人印象深刻的结构稳定性和前所未有的长期耐久性。采用计算建模方法来模拟和研究PAF的结构和吸附性能。这些结果表明,C-PAF和Si-PAF是用于高效氢储存的有前途的材料。